首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
The terminal differentiation of neurons occurs as precisely timed waves, with specific neuronal types differentiating in defined sequences. The precision of neuronal differentiation in the central nervous system offers an unusual opportunity to study terminal differentiation in vivo. The p34cdc2 kinase complex and the anti-oncogenes p53 and RB are central in the regulatory network that controls cell proliferation. We found high levels of expression of CDC2 mRNA and protein in proliferating neuronal precursor cells. The expression of both CDC2 and cyclin A was dramatically downregulated upon terminal differentiation of neurons in vivo and in a neuronal precursor cell line, ST15A. p53 mRNA expression was also downregulated but to a lesser extent; RB mRNA levels were unchanged during neuronal differentiation. Immunohistochemistry showed that p34cdc2 was expressed not only in the neuronal precursors of the cerebellar external granule layer but also in the early differentiating granule neurons. The expression of p34cdc2 in early neurons suggests a function for this enzyme in the events that occur soon after proliferation ceases. On the basis of the results reported here and other recent findings, we propose a model in which terminal differentiation is achieved by a switch in the neuronal precursors from p34cdc2-based proliferation to a differentiated state controlled by p34cdc2-related kinases.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disorder caused by polyglutamine-expanded ataxin-7. In the present investigation, we expressed disease-causing mutant ataxin-7-Q75 in the primary neuronal culture of cerebellum with the aid of recombinant adenoviruses. Subsequently, this in vitro cellular model of SCA7 was used to study the molecular mechanism by which mutant ataxin-7-Q75 induces neuronal death. TUNEL staining studies indicated that polyglutamine-expanded ataxin-7-Q75 caused apoptotic cell death of cultured cerebellar neurons. Mutant ataxin-7-Q75 induced the formation of active caspase-3 and caspase-9 without activating caspase-8. Polyglutamine-expanded ataxin-7-Q75 promoted the release of apoptogenic cytochrome-c and Smac from mitochondria, which was preceded by the downregulation of Bcl-x(L) protein and upregulation of Bax protein expression in cultured cerebellar neurons. Further real-time TaqMan RT-PCR assays showed that mutant ataxin-7-Q75 upregulated Bax mRNA level and downregulated Bcl-x(L) mRNA expression in the primary neuronal culture of cerebellum. The present study provides the evidence that polyglutamine-expanded ataxin-7-Q75 activates mitochondria-mediated apoptotic cascade and induces neuronal death by upregulating Bax expression and downregulating Bcl-x(L) expression of cerebellar neurons.  相似文献   

16.
Molecular physiology of neuronal K-ATP channels (review).   总被引:11,自引:0,他引:11  
ATP sensitive potassium (K-ATP) channels are widely expressed in many cell types including neurons. K-ATP channels are heteromeric membrane proteins that consist of two very different subunits: the pore-forming, two-transmembrane spanning potassium channel subunit (Kir6) and the regulatory, 17 transmembrane spanning sulphonylurea receptor (SUR). This ensemble--joined together in a 4:4 stoichiometry--endows this channel with a unique combination of functional properties. The open probability of K-ATP channels directly depends on the intracellular ATP/ADP levels allowing the channels to directly couple the metabolic state of a cell to its electrical activity. Here, recent progress on the molecular composition and functional diversity of neuronal K-ATP channels is reviewed. One is particular concerned with single-cell mRNA expression studies that give insight to the coexpression patterns of Kir6 and SUR isoforms in identified neurons. In addition, the physiological roles of neuronal K-ATP channels in glucose sensing and adapting neuronal activity to metabolic demands are discussed, as well as their emerging pathophysiological functions in acute brain ischemia and chronic neurodegenerative diseases.  相似文献   

17.
Book reviews     
ATP sensitive potassium (K-ATP) channels are widely expressed in many cell types including neurons. K-ATP channels are heteromeric membrane proteins that consist of two very different subunits: the pore-forming, two-transmembrane spanning potassium channel subunit (Kir6) and the regulatory, 17 transmembrane spanning sulphonylurea receptor (SUR). This ensemble―joined together in a 4:4 stoichiometry―endows this channel with a unique combination of functional properties. The open probability of K-ATP channels directly depends on the intracellular ATP/ADP levels allowing the channels to directly couple the metabolic state of a cell to its electrical activity. Here, recent progress on the molecular composition and functional diversity of neuronal K-ATP channels is reviewed. One is particular concerned with single-cell mRNA expression studies that give insight to the coexpression patterns of Kir6 and SUR isoforms in identified neurons. In addition, the physiological roles of neuronal K-ATP channels in glucose sensing and adapting neuronal activity to metabolic demands are discussed, as well as their emerging pathophysiological functions in acute brain ischemia and chronic neurodegenerative diseases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号