首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B. H. Judd  M. W. Shen    T. C. Kaufman 《Genetics》1972,71(1):139-156
An average size chromomere of the polytene X chromosome of Drosophila melanogaster contains enough DNA in each haploid equivalent strand to code for 30 genes, each 1,000 nucleotides long. We have attempted to learn about the organization of chromosomes by asking how many functional units can be localized within a chromomere. This was done by 1) recovery of mutants representative of every cistron in the 3A2-3C2 region; 2) the characterization of the function of each mutant type and grouping by complementation tests; 3) the determination of the genetic and cytological position of each cistron by recombination and deletion mapping. The data clearly show one functional group per chromomere. It is postulated that a chromomere is one cistron within which much of the DNA is regulatory in function.  相似文献   

2.
Genetic Analysis of Flagellar Mutants in Escherichia coli   总被引:37,自引:29,他引:8       下载免费PDF全文
Flagellar mutants in Escherichia coli were obtained by selection for resistance to the flagellotropic phage chi. F elements covering various regions of the E. coli genome were then constructed, and, on the basis of the ability of these elements to restore flagellar function, the mutations were assigned to three regions of the E. coli chromosome. Region I is between trp and gal; region II is between uvrC and aroD; and region III is between his and uvrC. F elements carrying flagellar mutations were constructed. Stable merodiploid strains with a flagellar defect on the exogenote and another on the endogenote were then prepared. These merodiploids yielded information on the complementation behavior of mutations in a given region. Region III was shown to include at least six cistrons, A, B, C, D, E, and F. Region II was shown to include at least four cistrons, G, H, I, and J. Examination of the phenotypes of the mutants revealed that those with lesions in cistron E of region III produce "polyhooks" and lesions in cistron F of region III result in loss of ability to produce flagellin. Mutants with lesions in cistron J of region II were entirely paralyzed (mot) mutants. Genetic analysis of flagellar mutations in region III suggested that the mutations located in cistrons A, B, C, and E are closely linked and mutations in cistrons D and F are closely linked.  相似文献   

3.
Transfer-defective mutants of the 10.4-kb Tra 2/Tra 3 region of RP1 were identified by their ability to be complemented by clones carrying all or part of this region. The respective mutations occurred in six cistrons whose order (traA, B, E, R, P, Q) and location were determined by deletion and insertion mapping. The cistrons occupy a minimum of 5.5 kb with the most distal, traA, spanning the 28.0-kb map position and traR the KpnI site at map position 24.1 kb. Each cistron is expressed independently, as Tn5 or Tn504 insertions in any one cistron do not affect the other five. The phenotypes controlled by each cistron suggest that all contribute to pilus biosynthesis/function while three (traB, R, and P) also contribute to surface exclusion. Given the occurrence of tra cistrons in the "silent" region between Tra 2 and Tra 3 we propose that the epithet "Tra 2" should be used to describe this entire region.  相似文献   

4.
The development of a transductional method for complementation tests between transfer-deficient mutants of the narrow-host-range R plasmic R91-5 of Pseudomonas aeruginosa has allowed the indentification of cistrons involved in the conjugal transfer of this plasmid. Complementation tests performed between transfer-deficient mutants characterized phenotypically with respect to sensitivity to donor-specific phage, ability to inhibit the replication of phage G101, and expression of entry-exclusion has identified a minimum of 10 transfer cistrons. Although most mutagen-induced mutants were relatively heterogeneous and appeared to be affected in a single cistron only, a high proportion of mutants isolated after selection for donor-specific phage resistance had deletions but always included tra Y. Mutants selected directly on the basis of transfer deficiency which also became donor-specific phage resistant fell into all 10 cistrons, suggesting that many R91-5 transfer cistrons are concerned with the synthesis of sex pili and other surface structures necessary for conjugal transfer. Conversely, most retaining donor-specific phage sensitivity belonged to one cistron, whereas transfer-deficient mutants which had also lost the ability to inhibit the replication of phage G101 comprised four cistrons.  相似文献   

5.
W. Kunz 《Genetics》1976,82(1):25-34
The number of rRNA cistrons is measured by filter saturation hybridization in different stocks of D. hydei, where the wild-type X chromosome has one nucleolus organizer (NO) and the wild-type Y has two separated NO's. (see PDF) females having no X chromosomal NO show an rDNA content exceeding that of a Y chromosome. An even greater increase in the rRNA cistron number is measured in two translocation stocks where the (see PDF) is combined with one half of a Y and, therefore, each stock contains only one of the two Y chromosomal NO's. But when the same Y fragments are brought together with a wild-type X chromosome they lose about one-half of their rRNA cistrons within one generation. Males with two complementary Y fragments but having no X chromosomal NO show a considerably higher rDNA content than the (see PDF) females, although both are equal in respect of their NO number. Consideration is given to related phenomena in Drosophila melanogaster.  相似文献   

6.
In the genome of Drosophila melanogaster there is a single locus, Triplo-lethal (Tpl), that causes lethality when present in either one or three copies in an otherwise diploid animal. Previous attempts to mutagenize Tpl produced alleles that were viable over a chromosome bearing a duplication of Tpl, but were not lethal in combination with a wild-type chromosome, as deficiencies for Tpl are. These mutations were interpreted as hypomorphic alleles of Tpl. In this work, we show that these alleles are not mutations at Tpl; rather, they are dominant mutations in a tightly linked, but cytologically distant, locus that we have named Suppressor-of-Tpl (Su(Tpl)). Su(Tpl) mutations suppress the lethality associated with three copies of the Triplo-lethal locus and are recessive lethal. We have mapped Su(Tpl) to the approximate map position 3-46.5, within the cytological region 76B-76D.  相似文献   

7.
The effect on phage morphogenesis of sus mutations in the cistrons coding for nonstructural proteins has been studied. Mutants in three cistrons analyzed that are involved in phage DNA synthesis, as well as in cistron 16 which codes for a late nonstructural protein, produce prolate capsids which are more rounded at the corners than complete phage heads and have an internal core; they contain the head proteins, the upper collar protein and protein p7, not present in mature phage particles. Mutants in cistron 7 do not produce capsids nor other phage-related structures; this result and the presence of p7 in phage capsids suggest an essential role in capsid assembly for this protein. The protein product of cistron 13 is probably needed for a stable DNA encapsulation since mutants in this cistron produce mainly DNA-free complete phage particles and only about 10% of uninfective DNA-containing complete phage. Cistron 15 codes for a late, partially dispensable, nonstructural protein which is present in the DNA-free capsids produced after infection with the delayed-lysis mutant sus14(1242), used as the wild-type control, or with mutants in cistrons 9, 11,12 and 13. Proteins p15 and p16 are probably involved in the encapsulation of viral DNA in a prohead.  相似文献   

8.
P1 transduction has been used to perform a complementation analysis of a series of transfer-deficient mutants of Flac. The results define ten cistrons and are consistent with the results of a conjugational analysis presented in an accompanying report. Both sets of results are summarized here. Between them, they define eleven cistrons, traA through traK, necessary for conjugational deoxyribonucleic acid (DNA) transfer. Mutants in traI and traD and some in traG still make F-pili, although traD mutants are resistant to f2 phage; their products may be involved in conjugational DNA metabolism. Other mutants in traG and all mutants in the remaining eight cistrons do not make F-pili. One of these, traJ, may be a control cistron, and the others may specify a biosynthetic pathway responsible for synthesis and modification of the F-pilin subunit protein and its assembly into the F-pilus.  相似文献   

9.
M Tsuda  T Iino 《Journal of bacteriology》1983,153(2):1018-1026
Complementation in bacteriophage E79 tv-l-mediated transduction and the phenotypic properties of the flagellar genes in Pseudomonas aeruginosa PAO were investigated by using 195 flagellar mutants of this organism. A total of 15 fla. 1 mot, and 2 che cistrons were identified. At least 5 fla cistrons (fla V to flaZ) and one mot cistron resided in one region, and at least 10 fla cistrons (flaA to flaJ) and two che cistrons (cheA and cheB) resided in another. The flaC mutants exhibited cistron-specific leakiness on motility agar plates. The flaE cistron may be the structural gene for the component protein of the flagellar filament. The cheA mutations, which resulted in pleiotropic phenotypes for flagellar formation, motility, and taxis, belonged to the same complementation group as the flaF mutations; that is, we inferred that cheA and flaF are synonymous.  相似文献   

10.
M Tsuda  T Iino 《Journal of bacteriology》1983,153(2):1008-1017
The flagellar genes of Pseudomonas aeruginosa PAO cluster on the chromosome at two distinct regions, region I and region II. The order of the flagellar cistrons in this organism was established by using transducing phage G101 and plasmids FP5 and R68.45. A method to insert transposon Tn501 near the fla genes was devised. We obtained two strains in which Tn501 was inserted at sites close to the flagellar cistrons in region II. We isolated Fla mutants in which the chromosomal segment between the two Tn501 insertion sites was deleted. Using Tn501-encoded mercury resistance as an outside marker, we determined the order of 9 of the 11 flagellar cistrons in region II as follows: puuF-region I-flaG-flaC-flaI-flaH-flaD-flaB-flaA-flaF-flaE-pur-67. By using phage G101-mediated transduction, the mutation converting monoflagellated bacteria into the multiflagellated (mfl) form was closely linked to the five fla cistrons in region I. Using mfl as an outside marker, we determined the order of the five cistrons as follows: puuF-flaV-flaZ-flaW-flaX-flaY-region II. The mfl mutation was shown to be either located within the flaV cistron or linked very closely to this cistron. No linkage was observed in transductions between any of the fla cistrons in region I and any of the fla cistrons in region II.  相似文献   

11.
The spoIVC locus of Bacillus subtilis was analysed. Fourteen spoIVC mutants isolated following nitrosoguanidine mutagenesis were used along with two previously characterized spoIVC mutants to construct a fine structure genetic map of the locus. The recombination index (RI) measured between extreme mutations was 0.26; no recombination could be detected between four of the mutations. Complementation analysis showed that all the mutations fall into two cistrons. The RI between extreme mutations in cistron A was about 0.17 and that between extreme mutations in cistron B was about 0.05. In respect of biochemical markers, the spoIVC mutations all produced similar phenotypes, irrespective of their location. However, in both cistrons oligosporogenous and asporogenous mutations mapped close together.  相似文献   

12.
Fifty-four suppressible mutants of bacteriophage phi29 have been isolated with a variety of mutagens and assigned to eight complementation groups. Viral-specific protein synthesis in UV light-irradiated, nonsuppressing Bacillus subtilis 60084 was analyzed with exponential acrylamide gels. Four additional phi29 proteins which were undetected on ordinary acrylamide gels are reported in this paper. Five phage phi29 proteins have been unambiguously assigned to specific cistrons. Two cistrons had pleiotropic effects on viral protein synthesis. Mutants in cistrons I or II were unable to synthesize DNA in nonsuppressing bacteria. Mutants in cistron I were unable to attach viral chromosomes to the host cell membrane, and the protein responsible for this function has been identified. The other viral protein playing a role in phage phi29 DNA synthesis is also identified and assigned to cistron II. Mutants in cistron II can attach viral chromosomes to membrane, but cannot synthesize DNA in nonsuppressing bacteria.  相似文献   

13.
Lethal phases of the hybrids betweenDrosophila melanogaster and its sibling species,D. simulans are classified into three types: (1) embryonic lethality in hybrids carryingD. simulans cytoplasm andD. melanogaster X chromosome, (2) larval lethality in hybrids not carryingD. simulans X, and (3) temperature-sensitive pupal lethality in hybrids carryingD. simulans X. The same lethal phases are also observed when either of the two other sibling species,D. mauritiana orD. sechellia, is employed for hybridization withD. melanogaster. Here, we describe genetic analyses of each hybrid lethality, and demonstrate that these three types of lethality are independent phenomena. We then propose two models to interpret the mechanisms of each hybrid lethality. The first model is a modification of the conventional X/autosome imbalance hypothesis assuming a lethal gene and a suppressor gene are involved in the larval lethality, while the second model is for embryonic lethality assuming an interaction between a maternal-effect lethal gene and a suppressor gene.  相似文献   

14.
15.
16.
Trowbridge K  McKim K  Brill SJ  Sekelsky J 《Genetics》2007,176(4):1993-2001
Mus81-Mms4 (Mus81-Eme1 in some species) is a heterodimeric DNA structure-specific endonuclease that has been implicated in meiotic recombination and processing of damaged replication forks in fungi. We generated and characterized mutations in Drosophila melanogaster mus81 and mms4. Unlike the case in fungi, we did not find any role for MUS81-MMS4 in meiotic crossing over. A possible role for this endonuclease in repairing double-strand breaks that arise during DNA replication is suggested by the finding that mus81 and mms4 mutants are hypersensitive to camptothecin; however, these mutants are not hypersensitive to other agents that generate lesions that slow or block DNA replication. In fungi, mus81, mms4, and eme1 mutations are synthetically lethal with mutations in genes encoding RecQ helicase homologs. Similarly, we found that mutations in Drosophila mus81 and mms4 are synthetically lethal with null mutations in mus309, which encodes the ortholog of the Bloom Syndrome helicase. Synthetic lethality is associated with high levels of apoptosis in proliferating tissues. Lethality and elevated apoptosis were partially suppressed by a mutation in spn-A, which encodes the ortholog of the strand invasion protein Rad51. These findings provide insights into the causes of synthetic lethality.  相似文献   

17.
The cytology and developmental attributes of 18 deficiency mutations in the 3A1–3C6 region of the salivary gland X chromosome of Drosophila melanogaster have been investigated. The cytological limits of several older deficiencies have been revised and clarified and several new deficiencies are characterized. The deficiency mutants, with one possible exception, show a lethal phase in the late embryonic period or the early first larval instar. In contrast, the earliest acting point mutation lethals exposed by these deficiencies generally exhibit a somewhat later, post-embryonic lethality, perhaps indicating that the deficiencies are having some cumulative or synergistic impact on development. However, even with this difference in time of lethality, it is still possible to conclude that it is not the absolute size of the deficiency but rather the character of the loci deleted that determines the impact on development. Observations on the morphology of lethal embryos shows that while this analysis is internally consistent, it does not agree with earlier work. None of the 3A1–3C6 deficiencies causes any major teratologies during embryogenesis. Furthermore, the "earliest acting" gene in this region does not lie in band 3C1 but is most likely associated with bands 3A8–10.  相似文献   

18.
The phenotypes of five different lethal mutants of Drosophila melanogaster that have small imaginal discs were analyzed in detail. From these results, we inferred whether or not the observed imaginal disc phenotype resulted exclusively from a primary imaginal disc defect in each mutant. To examine the validity of these inferences, we employed a multiple-allele method. Lethal alleles of the five third-chromosome mutations were identified by screening EMS-treated chromosomes for those which fail to complement with a chromosome containing all five reference mutations. Twenty-four mutants were isolated from 13,197 treated chromosomes. Each of the 24 was then tested for complementation with each of the five reference mutants. There was no significant difference in the mutation frequencies at these five loci. The stage of lethality and the imaginal disc morphology of each mutant allele were compared to those of its reference allele in order to examine the range of defects to be found among lethal alleles of each locus. In addition, hybrids of the alleles were examined for intracistronic complementation. For two of the five loci, we detected no significant phenotypic variation among lethal alleles. We infer that each of the mutant alleles at these two loci cause expression of the null activity phenotype. However, for the three other loci, we did detect significant phenotypic variation among lethal alleles. In fact, one of the mutant alleles at each of these three loci causes no detectable imaginal disc defect. This demonstrates that attempting to assess the developmental role of a gene by studying a single mutant allele may lead to erroneous conclusions. As a byproduct of the mutagenesis procedure, we have isolated two dominant, cold-sensitive mutants.  相似文献   

19.
Enzymatic tests were performed on a series of cysteine-requiring mutants for the presence of the sulfate activating enzymes. ATP-sulfurylase (sulfate adenylyltransferase EC 2.7.7.4) and APS-kinase (adenylylsulfate kinase EC 2.7.1.25). The enzymatic products adenosine 5'-[35S]sulfatophosphate and adenosine 3'-phosphate 5'-[35S]sulfatophosphate were identified by paper electrophoresis and measured quantitatively without elution from the paper. Cys mutants mapping in cistrons, A, H, I, J, G, and Ea contain both enzymes. Mutation in the D cistron leads to the loss of ATP-sulfurylase. Mutants mapping in the C cistron lack APS-kinase. Ba, Bb, and Bc mutants lack both enzymes. The control of the synthesis of these enzymes by cysteine was examined. Both enzymes are missing when cells are grown on cysteine.  相似文献   

20.
CENP-meta has been identified as an essential, kinesin-like motor protein in Drosophila. The 257-kD CENP-meta protein is most similar to the vertebrate kinetochore-associated kinesin-like protein CENP-E, and like CENP-E, is shown to be a component of centromeric/kinetochore regions of Drosophila chromosomes. However, unlike CENP-E, which leaves the centromere/kinetochore region at the end of anaphase A, the CENP-meta protein remains associated with the centromeric/kinetochore region of the chromosome during all stages of the Drosophila cell cycle. P-element-mediated disruption of the CENP-meta gene leads to late larval/pupal stage lethality with incomplete chromosome alignment at metaphase. Complete removal of CENP-meta from the female germline leads to lethality in early embryos resulting from defects in metaphase chromosome alignment. Real-time imaging of these mutants with GFP-labeled chromosomes demonstrates that CENP-meta is required for the maintenance of chromosomes at the metaphase plate, demonstrating that the functions required to establish and maintain chromosome congression have distinguishable requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号