首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of slippage-like processes to genome evolution   总被引:19,自引:0,他引:19  
Simple sequences present in long (>30 kb) sequences representative of the single-copy genome of five species (Homo sapiens, Caenorhabditis elegans Saccharomyces cerevisiae, E. coli, and Mycobacterium leprae) have been analyzed. A close relationship was observed between genome size and the overall level of sequence repetition. This suggested that the incorporation of simple sequences had accompanied increases of genome size during evolution. Densities of simple sequence motifs were higher in noncoding regions than in coding regions in eukaryotes but not in eubacteria. All five genomes showed very biased frequency distributions of simple sequence motifs in all species, particularly in eukaryotes where AAA and TTT predominated. Interspecific comparisons showed that noncoding sequences in eukaryotes showed highly significantly similar frequency distributions of simple sequence motifs but this was not true of coding sequences. ANOVA of the frequency distributions of simple sequence motifs indicated strong contributions from motif base composition and repeat unit length, but much of the variation remained unexplained by these parameters. The sequence composition of simple sequences therefore appears to reflect both underlying sequence biases in slippage-like processes and the action of selection. Frequency distributions of simple sequence motifs in coding sequences correlated weakly or not at all with those in noncoding sequences. Selection on coding sequences to eliminate undesirable sequences may therefore have been strong, particularly in the human lineage.  相似文献   

2.
Vanishing GC-rich isochores in mammalian genomes   总被引:25,自引:0,他引:25  
Duret L  Semon M  Piganeau G  Mouchiroud D  Galtier N 《Genetics》2002,162(4):1837-1847
To understand the origin and evolution of isochores-the peculiar spatial distribution of GC content within mammalian genomes-we analyzed the synonymous substitution pattern in coding sequences from closely related species in different mammalian orders. In primate and cetartiodactyls, GC-rich genes are undergoing a large excess of GC --> AT substitutions over AT --> GC substitutions: GC-rich isochores are slowly disappearing from the genome of these two mammalian orders. In rodents, our analyses suggest both a decrease in GC content of GC-rich isochores and an increase in GC-poor isochores, but more data will be necessary to assess the significance of this pattern. These observations question the conclusions of previous works that assumed that base composition was at equilibrium. Analysis of allele frequency in human polymorphism data, however, confirmed that in the GC-rich parts of the genome, GC alleles have a higher probability of fixation than AT alleles. This fixation bias appears not strong enough to overcome the large excess of GC --> AT mutations. Thus, whatever the evolutionary force (neutral or selective) at the origin of GC-rich isochores, this force is no longer effective in mammals. We propose a model based on the biased gene conversion hypothesis that accounts for the origin of GC-rich isochores in the ancestral amniote genome and for their decline in present-day mammals.  相似文献   

3.
4.
Summary We have analyzed the correlation that exists between the GC levels of third and first or second codon position for about 1400 human coding sequences. The linear relationship that was found indicates that the large differences in GC level of third codon positions of human genes are paralleled by smaller differences in GC levels of first and second codon positions. Whereas third codon position differences correspond to very large differences in codon usage within the human genome, the first and second codon position differences correspond to smaller, yet very remarkable, differences in the amino acid composition of encoded proteins. Because GC levels of codon positions are linearly correlated with the GC levels of the isochores harboring the corresponding genes, both codon usage and amino acid composition are different for proteins encoded by genes located in isochores of different GC levels. Furthermore, we have also shown that a linear relationship with a unity slope and a correlation coefficient of 0.77 exists between GC levels of introns and exons from the 238 human genes currently available for this analysis. Introns are, however, about 5% lower in GC, on average, than exons from the same genes.  相似文献   

5.
We compared the exon/intron organization of vertebrate genes belonging to different isochore classes, as predicted by their GC content at third codon position. Two main features have emerged from the analysis of sequences published in GenBank: (1) genes coding for long proteins (i.e., 500 aa) are almost two times more frequent in GC-poor than in GC-rich isochores; (2) intervening sequences (=sum of introns) are on average three times longer in GC-poor than in GC-rich isochores. These patterns are observed among human, mouse, rat, cow, and even chicken genes and are therefore likely to be common to all warm-blooded vertebrates. Analysis of Xenopus sequences suggests that the same patterns exist in cold-blooded vertebrates. It could be argued that such results do not reflect the reality because sequence databases are not representative of entire genomes. However, analysis of biases in GenBank revealed that the observed discrepancies between GC-rich and GC-poor isochores are not artifactual, and are probably largely underestimated. We investigated the distribution of microsatellites and interspersed repeats in introns of human and mouse genes from different isochores. This analysis confirmed previous studies showing that Ll repeats are almost absent from GC-rich isochores. Microsatellites and SINES (Alu, B1, B2) are found at roughly equal frequencies in introns from all isochore classes. Globally, the presence of repeated sequences does not account for the increased intron length in GC-poor isochores. The relationships between gene structure and global genome organization and evolution are discussed.  相似文献   

6.
7.
8.
The compositional distributions of large (main-band) DNA fragments from eight birds belonging to eight different orders (including both paleognathous and neognathous species) are very broad and extremely close to each other. These findings, which are paralleled by the compositional similarity of homologous coding sequences and their codon positions, support the idea that birds are a monophyletic group.The compositional distribution of third-codon positions of genes from chicken, the only avian species for which a relatively large number of coding sequences is known, is very broad and bimodal, the minor GC-richer peak reaching 100% GC. The very high compositional heterogeneity of avian genomes is accompanied (as in the case of mammalian genomes) by a very high speciation rate compared to cold-blooded vertebrates which are characterized by genomes that are much less heterogeneous. The higher GC levels attained by avian compared to mammalian genomes might be correlated with the higher body temperature (41–43°C) of birds compared to mammals (37°C).A comparison of GC levels of coding sequences and codon positions from man and chicken revealed very close average GC levels and standard deviations. Homologous coding sequences and codon positions from man and chicken showed a surprisingly high degree of compositional similarity which was, however, higher for GC-poor than for GC-rich sequences. This indicates that GC-poor isochores of warm-blooded vertebrates reflect the composition of the isochores of the genome of the common reptilian ancestor of mammals and birds, which underwent only a small compositional change at the transition from cold- to warm-blooded vertebrates. In contrast, the GC-rich isochores of birds and mammals are the result of large compositional changes at the same evolutionary transition, where were in part different in the two classes of warm-blooded vertebrates.Correspondence to: G. Bernaadi  相似文献   

9.
Fortes GG  Bouza C  Martínez P  Sánchez L 《Genetica》2007,129(3):281-289
To review the general consideration about the different compositional structure of warm and cold-blooded vertebrates genomes, we used of the increasing number of genetic sequences, including coding (exons) and non-coding (introns) regions, that have been deposited on the databases throughout last years. The nucleotide distributions of the third codon positions (GC3) have been analyzed in 1510 coding sequences (CDS) of fish, 1414 CDS of amphibians and 320 CDS of reptiles. Also, the relationship between GC content of 74, 56 and 25 CDS of fish, amphibians and reptiles, respectively and that of their corresponding introns (GCI) have been considerated. In accordance with recent data, sequence analysis showed the presence of very GC3-rich CDS in these poikilotherm vertebrates. However, very high diversity in compositional patterns among different orders of fish, amphibians and reptiles was found. Significant positive correlations between GC3 and GCI was also confirmed for the genes analyzed. Nevertheless, introns resulted to be poorer in GC than their corresponding CDS, this difference being larger than in human genome. Because the limited number of available sequences including exons and introns we must be cautious about the results derived from them. However, the indicious of higher GC richness of coding sequences than of their corresponding introns could aid to understand the discrepancy of sequence analysis with the ultracentrifugation studies in cold-blooded vertebrates that did not predict the existence of GC-rich isochores.  相似文献   

10.
The compositional properties of human genes   总被引:8,自引:0,他引:8  
Summary The present work represents the first attempt to study in greater detail previously proposed compositional correlations in genomes, based on a body of additional data relating to gene localizations as well as to extended flanking sequences extracted from gene banks. We have investigated the correlations that exist between (1) the GC levels of exons of human genes, and (2) the GC levels of either intergenic sequences or introns associated with the genes under consideration. In both cases, linear relationships with slopes close to unity were found. The similarity of the linear relationships indicates similar GC levels in intergenic sequences and introns located in the same isochores. Moreover, both intergenic sequences and introns showed GC levels 5–10% lower than the corresponding exons. The above findings considerably strengthen the previously drawn conclusion that coding and noncoding sequences (both inter- and intragenic) from the same isochores of the human genome are compositionally correlated. In addition, we find linear correlations between the GC levels of codon positions and of the intergenic sequences or introns associated with the corresponding genes, as well as among the GC levels of codon positions of genes.  相似文献   

11.
12.
Summary We have made pairwise comparisons between the coding sequences of 21 genes from coldblooded vertebrates and 41 homologous sequences from warm-blooded vertebrates. In the case of 12 genes, GC levels were higher, especially in third codon positions, in warm-blooded vertebrates compared to cold-blooded vertebrates. Six genes showed no remarkable difference in GC level and three showed a lower level. In the first case, higher GC levels appear to be due to a directional fixation of mutations, presumably under the influence of body temperature (see Bernardi and Bernardi 1986b). These GC-richer genes of warm-blooded vertebrates were located, in all cases studied, in isochores higher in GC than those comprising the homologous genes of cold-blooded vertebrates. In the third case, increases appear to be due to a limited formation of GC-rich isochores which took place in some cold-blooded vertebrates after the divergence of warm-blooded vertebrates. The directional changes in the GC content of coding sequences and the evolutionary conservation of both increased and unchanged GC levels are in keeping with the existence of compositional constraints on the genome.  相似文献   

13.
Isochore patterns and gene distributions in fish genomes   总被引:2,自引:0,他引:2  
The compositional approach developed in our laboratory many years ago revealed a large-scale compositional heterogeneity in vertebrate genomes, in which GC-rich and GC-poor regions, the isochores, were found to be characterized by high and low gene densities, respectively. Here we mapped isochores on fish chromosomes and assessed gene densities in isochore families. Because of the availability of sequence data, we have concentrated our investigations on four species, zebrafish (Brachydanio rerio), medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), and pufferfish (Tetraodon nigroviridis), which belong to four distant orders and cover almost the entire GC range of fish genomes. These investigations produced isochore maps that were drastically different not only from those of mammals (in that only two major isochore families were essentially present in each genome vs five in the human genome) but also from each other (in that different isochore families were represented in different genomes). Gene density distributions for these fish genomes were also obtained and shown to follow the expected increase with increasing isochore GC. Finally, we discovered a remarkable conservation of the average size of the isochores (which match replicon clusters in the case of human chromosomes) and of the average GC levels of isochore families in both fish and human genomes. Moreover, in each genome the GC-poorest isochore families comprised a group of "long isochores" (2-20 Mb in size), which were the lowest in GC and varied in size distribution and relative amount from one genome to the other.  相似文献   

14.
15.
16.
Clay O  Carels N  Douady C  Macaya G  Bernardi G 《Gene》2001,276(1-2):15-24
GC level distributions of a species' nuclear genome, or of its compositional fractions, encode key information on structural and functional properties of the genome and on its evolution. They can be calculated either from absorbance profiles of the DNA in CsCl density gradients at sedimentation equilibrium, or by scanning long contigs of largely sequenced genomes. In the present study, we address the quantitative characterization of the compositional heterogeneity of genomes, as measured by the GC distributions of fixed-length fragments. Special attention is given to mammalian genomes, since their compartmentalization into isochores implies two levels of heterogeneity, intra-isochore (local) and inter-isochore (global). This partitioning is a natural one, since large-scale compositional properties vary much more among isochores than within them. Intra-isochore GC distributions become roughly Gaussian for long fragments, and their standard deviations decrease only slowly with increasing fragment length, unlike random sequences. This effect can be explained by 'long-range' correlations, often overlooked, that are present along isochores.  相似文献   

17.
Whether isochores, the large-scale variation of the GC content in mammalian genomes, are being maintained has recently been questioned. It has been suggested that GC-rich isochores originated in the ancestral amniote genome but that whatever force gave rise to them is no longer effective and that isochores are now disappearing from mammalian genomes. Here we investigated the evolution of the GC content of 41 coding genes in 6 to 66 species of mammals by estimating the ancestral GC content using a method which allows for different rates of substitution between sites. We found a highly significant decrease in the GC content during early mammalian evolution, as well as a weaker but still significant decrease in the GC content of GC-rich genes later in at least three groups of mammals: primates, rodents, and carnivores. These results are of interest because they confirm the recently suggested disappearance of GC-rich isochores in some mammalian genomes, and more importantly, they suggest that this disappearance started very early in mammalian evolution.This article contains online supplementary material.  相似文献   

18.
19.
20.
Gao F  Zhang CT 《The FEBS journal》2006,273(8):1637-1648
The availability of the complete chicken genome sequence provides an unprecedented opportunity to study the global genome organization at the sequence level. Delineating compositionally homogeneous G + C domains in DNA sequences can provide much insight into the understanding of the organization and biological functions of the chicken genome. A new segmentation algorithm, which is simple and fast, has been proposed to partition a given genome or DNA sequence into compositionally distinct domains. By applying the new segmentation algorithm to the draft chicken genome sequence, the mosaic organization of the chicken genome can be confirmed at the sequence level. It is shown herein that the chicken genome is also characterized by a mosaic structure of isochores, long DNA segments that are fairly homogeneous in the G + C content. Consequently, 25 isochores longer than 2 Mb (megabases) have been identified in the chicken genome. These isochores have a fairly homogeneous G + C content and often correspond to meaningful biological units. With the aid of the technique of cumulative GC profile, we proposed an intuitive picture to display the distribution of segmentation points. The relationships between G + C content and the distributions of genes (CpG islands, and other genomic elements) were analyzed in a perceivable manner. The cumulative GC profile, equipped with the new segmentation algorithm, would be an appropriate starting point for analyzing the isochore structures of higher eukaryotic genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号