首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to decipher the diversity of methanogens in rumen of Murrah buffaloes so that effective strategies can be made in order to mitigate methane emission from these methanogens. In the present study diversity of rumen methanogens in Murrah buffaloes (Bubalus bubalis) from North India was evaluated by using mcr-A gene library obtained from the pooled PCR product from four animals and by using MEGA4 software. A total of 104 clones were examined, revealing 26 different mcr-A gene sequences or phylotypes. Of the 26 phylotypes, 16 (64 of 104 clones) were less than 97% similar to any of the cultured strain of methanogens. Seven clone sequences were clustered with Methanomicrobium mobile and three clone sequences were clustered with Methanobrevibacter gottschalkii during the phylogenetic analysis. Uncultured group of methanogens comes out to be the major component of the methanogens community structure in Murrah buffaloes. Methanomicrobium phylotype comes out to be major phylotype among cultured methanogens followed by Methanobrevibacter phylotype. These results help in making effective strategies to check the growth of dominant communities in the rumen of this animal which in turn help in the reduction of methane emission in the environment and ultimately helps us in fighting with the problem of global warming.  相似文献   

2.
Aims:  To study the diversity of rumen methanogens in Murrah buffaloes ( Bubalus bubalis ) from North India by using 16S rRNA gene libraries obtained from the pooled rumen content from four animals and using suitable software analysis.
Methods and Results:  Genomic DNA was isolated and PCR was set up by using specific primers. Amplified product was cloned into a suitable vector and the positive clones were selected on the basis of blue–white screening and sequenced. The resulting nucleotide sequences were arranged in the phylogenetic tree. A total of 108 clones were examined, revealing 17 different 16S rRNA gene sequences or phylotypes. Of the 17 phylotypes, 15 (102 of 108 clones) belonged to the genus Methanomicrobium , indicating that the genus Methanomicrobium is the most dominant component of methanogen populations in Murrah buffaloes ( Bubalus bubalis ) from North India. The largest group of clones (102 clones) was more than 98% similar to Methanomicrobium mobile . BLAST analysis of the rumen contents from individual animals also revealed 17 different phylotypes with a range of 3–10 phylotypes per animal.
Conclusion:  Methanomicrobium phylotype is the most dominant phylotype of methanogens present in Murrah buffaloes ( Bubalus bubalis ).
Significance and Impact of the Study:  Effective strategies can be made to inhibit the growth of Methanomicrobium phylotype to reduce the methane emission from rumen contents and thus help in preventing global warming.  相似文献   

3.
In the present study, the diversity of rumen methanogens in crossbred Karan Fries cattle was determined by constructing 16S rRNA and mcrA (methyl coenzyme-M reductase α subunit) gene libraries using specific primers. All thirteen OTUs or phylotypes from 16S rRNA library clustered with order Methanobacteriales, twelve of which aligned with Methanobrevibacter spp., whereas one OTU resemble with Methanosphaera stadtmanae. Out of eighteen OTUs identified from mcrA gene library, fifteen clustered with order Methanobacteriales, two resemble with Methanomicrobiales and remaining one grouped with Methanosarcinales. These results revealed that Methanobrevibacter phylotype was predominantly present in Karan Fries crossbred cattle fed on high fibrous diet containing wheat straw. Compared to 16S rRNA gene, mcrA gene OTUs clustered in three orders providing better insights of rumen methanogens diversity in cattle.  相似文献   

4.
Rumen methanogens in sheep from Venezuela were examined using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE) profiles prepared from pooled and individual PCR products from the rumen contents from 10 animals. A total of 104 clones were examined, revealing 14 different 16S rRNA gene sequences or phylotypes. Of the 14 phylotypes, 13 (99 of 104 clones) belonged to the genus Methanobrevibacter, indicating that the genus Methanobrevibacter is the most dominant component of methanogen populations in sheep in Venezuela. The largest group of clones (41 clones) was 97.9-98.5% similar to Methanobrevibacter gottschalkii. Two sequences were identified as possible new species, one belonging to the genus Methanobrevibacter and the other belonging to the genus Methanobacterium. DGGE analysis of the rumen contents from individual animals also revealed 14 different bands with a range of 4-9 bands per animal.  相似文献   

5.
Association patterns between archaea and rumen protozoa were evaluated by analyzing archaeal 16S rRNA gene clone libraries from ovine rumen inoculated with different protozoa. Five protozoan inoculation treatments, fauna free (negative control), holotrich and cellulolytic protozoa, Isotricha and Dasytricha spp., Entodinium spp., and total fauna (type A) were tested. We used denaturing gradient gel electrophoresis, quantitative PCR, and phylogenetic analysis to evaluate the impact of the protozoan inoculants on the respective archaeal communities. Protozoan 18S ribosomal DNA clone libraries were also evaluated to monitor the protozoal population that was established by the inoculation. Phylogenetic analysis suggested that archaeal clones associated with the fauna-free, the Entodinium, and the type A inoculations clustered primarily with uncultured phylotypes. Polyplastron multivesiculatum was the predominant protozoan strain established by the holotrich and cellulolytic protozoan treatment, and this resulted predominantly in archaeal clones affiliated with uncultured and cultured methanogenic phylotypes (Methanosphaera stadtmanae, Methanobrevibacter ruminantium, and Methanobacterium bryantii). Furthermore, the Isotricha and Dasytricha inoculation treatment resulted primarily in archaeal clones affiliated with Methanobrevibacter smithii. This report provides the first assessment of the influence of protozoa on archaea within the rumen microbial community and provides evidence to suggest that different archaeal phylotypes associate with specific groups of protozoa. The observed patterns may be linked to the evolution of commensal and symbiotic relationships between archaea and protozoa in the ovine rumen environment. This report further underscores the prevalence and potential importance of a rather large group of uncultivated archaea in the ovine rumen, probably unrelated to known methanogens and undocumented in the bovine rumen.  相似文献   

6.
The population of methanogens in the sheep rumen microbial ecosystem was studied by using 16S rDNA cloning analysis, epifluorescence microscopy (which detects autofluorescence of a specific cofactor F420 in methanogens) and the 16S rRNA-targeted in situ hybridization technique. The 16S rDNA clone libraries were constructed by PCR amplification with an Archaea-specific primer set and partial sequencing of the clonal 16S rDNAs was done. Phylogenetic analysis indicated that the clones were affiliated with Methanomicrobium ruminantium and mobile, Methanobrevibacter smithii. Epifluorescence microscopy (F420 autofluorescence) and in situ hybridization by using a newly designed M. mobile-specific 16S rRNA-targeted oligonucleotide probe found that methanogens accounted for approximately 3.6% of total ruminal microorganisms and approximately 54% of the total methanogens were M. mobile.  相似文献   

7.
Three methanogen 16S rRNA gene clone libraries were constructed from liquid (LM), solid (SM) and epithelium (EM) fractions taken from the rumen of Jinnan cattle in China. After the amplification by PCR using methanogen-specific primers Met86F and Met1340R, equal quantities of PCR products from the same fractions from each of the four cattle were mixed together and used to construct the three libraries. Sequence analysis showed that the 268 LM clones were divided into 35 phylotypes with 18 sequences of phylotypes affiliated with the genus Methanobrevibacter (84.3% of clones). The 135 SM clones were divided into 19 phylotypes with 11 phylotypes affiliated with the genus Methanobrevibacter (77.8%). The 267 EM clones were divided into 33 phylotypes with 15 phylotypes affiliated with the genus Methanobrevibacter (77.2%). Clones closely related to Methanomicrobium mobile and Methanobrevibacter wolinii were only found in the LM library, and those to Methanobrevibacter ruminantium and Methanobrevibacter gottschalkii only in the SM library. LM library comprised 12.4% unidentified euryarchaeal clones, SM library 23.7% and EM library 25.5%, respectively. Five phylotypes (accession number: EF055528 and EF055531-EF055534) did not belong to the Euryarchaeota sequences we had known. One possible new genus (represented by phylotype E17, accession number EF055528) belonging to Methanobacteriaceae was identified from EM library. Quantitative real-time PCR for the first time revealed that epithelium fraction had significantly higher density of methanogens, with methanogenic mcrA gene copies (9.95 log 10 (copies per gram of wet weight)) than solid (9.26, P < 0.01) and the liquid (8.44, P < 0.001). The three clone libraries also appeared different in Shannon index (EM library 2.12, LM library 2.05 and SM library 1.73). Our results showed that there were apparent differences in the methanogenic diversity and abundance in the three different fractions within the rumen of Jinnan cattle, with Methanobrevibacter species predominant in all the three libraries and with epithelium fraction having more unknown species and higher density of methanogens.  相似文献   

8.
Molecular diversity of rumen methanogens from sheep in Western Australia   总被引:10,自引:0,他引:10  
The molecular diversity of rumen methanogens in sheep in Australia was investigated by using individual 16S rRNA gene libraries prepared from the rumen contents obtained from six merino sheep grazing pasture (326 clones), six sheep fed an oaten hay-based diet (275 clones), and five sheep fed a lucerne hay-based diet (132 clones). A total of 733 clones were examined, and the analysis revealed 65 phylotypes whose sequences (1,260 bp) were similar to those of cultivated methanogens belonging to the order Methanobrevibacter: Pasture-grazed sheep had more methanogen diversity than sheep fed either the oaten hay or lucerne hay diet. Methanobrevibacter strains SM9, M6, and NT7 accounted for over 90% of the total number of clones identified. M6 was more prevalent in grazing sheep, and SM9, despite being found in 16 of the 17 sheep, was more prevalent in sheep fed the lucerne-based diet. Five new species were identified. Two of these species exhibited very little sequence similarity to any cultivated methanogens and were found eight times in two of the six sheep that were grazing pasture. These unique sequences appear to represent a novel group of rumen archaea that are atypical for the rumen environment.  相似文献   

9.
Molecular diversity of rumen archaeal populations from bovine rumen fluid incubated with or without condensed tannins was investigated using 16S rRNA gene libraries. The predominant order of rumen archaea in the 16S rRNA gene libraries of the control and condensed tannins treatment was found to belong to a novel group of rumen archaea that is distantly related to the order Thermoplasmatales, with 59.5% (15 phylotypes) and 81.43% (21 phylotypes) of the total clones from the control and treatment clone libraries, respectively. The 16S rRNA gene library of the control was found to have higher proportions of methanogens from the orders Methanomicrobiales (32%) and Methanobacteriales (8.5%) as compared to those found in the condensed tannins treatment clone library in both orders (16.88% and 1.68% respectively). The phylotype distributed in the order Methanosarcinales was only found in the control clone library. The study indicated that condensed tannins could alter the diversity of bovine rumen methanogens.  相似文献   

10.
Fecal microbial diversity in a strictly vegetarian woman was determined by the 16S rDNA library method, terminal restriction fragment length polymorphism (T-RFLP) analysis and a culture-based method. The 16S rDNA library was generated from extracted fecal DNA, using bacteria-specific primers. Randomly selected clones were partially sequenced. T-RFLP analysis was performed using amplified 16S rDNA. The lengths of T-RF were analyzed after digestion by HhaI and MspI. The cultivated bacterial isolates were used for partial sequencing of 16S rDNA. Among 183 clones obtained, approximately 29% of the clones belonged to 13 known species. About 71% of the remaining clones were novel "phylotypes" (at least 98% similarity of clone sequence). A total of 55 species or phylotypes were identified among the 16S rDNA library, while the cultivated isolates included 22 species or phylotypes. In addition, many new phylotypes were detected from the 16S rDNA library. The 16S rDNA library and isolates commonly included the Bacteroides group, Bifidobacterium group, and Clostridium rRNA clusters IV, XIVa, XVI and XVIII. T-RFLP analysis revealed the major composition of the vegetarian gut microbiota were Clostridium rRNA subcluster XIVa and Clostridium rRNA cluster XVIII. The dominant feature of this strictly vegetarian gut microbiota was the detection of many Clostridium rRNA subcluster XIVa and C. ramosum (Clostridium rRNA cluster XVIII).  相似文献   

11.
The molecular diversity of rumen methanogens in feedlot cattle and the composition of the methanogen populations in these animals from two geographic locations were investigated using 16S rRNA gene libraries prepared from pooled PCR products from 10 animals in Ontario (127 clones) and 10 animals from Prince Edward Island (114 clones). A total of 241 clones were examined, with Methanobrevibacter ruminantium accounting for more than one-third (85 clones) of the clones identified. From these 241 clones, 23 different 16S rRNA phylotypes were identified. Feedlot cattle from Ontario, which were fed a corn-based diet, revealed 11 phylotypes (38 clones) not found in feedlot cattle from Prince Edward Island, whereas the Prince Edward Island cattle, which were fed potato by-products as a finishing diet, had 7 phylotypes (42 clones) not found in cattle from Ontario. Five sequences, representing the remaining 161 clones (67% of the clones), were common in both herds. Of the 23 different sequences, 10 sequences (136 clones) were 89.8 to 100% similar to those from cultivated methanogens belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales, and the remaining 13 sequences (105 clones) were 74.1 to 75.8% similar to those from Thermoplasma volcanium and Thermoplasma acidophilum. Overall, nine possible new species were identified from the two clone libraries, including two new species belonging to the order Methanobacteriales and a new genus/species within the order Methanosarcinales. From the present survey, it is difficult to conclude whether the geographical isolation between these two herds or differences between the two finishing diets directly influenced community structure in the rumen. Further studies are warranted to properly assess the differences between these two finishing diets.  相似文献   

12.
The molecular diversity of rumen methanogens in sheep in Australia was investigated by using individual 16S rRNA gene libraries prepared from the rumen contents obtained from six merino sheep grazing pasture (326 clones), six sheep fed an oaten hay-based diet (275 clones), and five sheep fed a lucerne hay-based diet (132 clones). A total of 733 clones were examined, and the analysis revealed 65 phylotypes whose sequences (1,260 bp) were similar to those of cultivated methanogens belonging to the order Methanobacteriales. Pasture-grazed sheep had more methanogen diversity than sheep fed either the oaten hay or lucerne hay diet. Methanobrevibacter strains SM9, M6, and NT7 accounted for over 90% of the total number of clones identified. M6 was more prevalent in grazing sheep, and SM9, despite being found in 16 of the 17 sheep, was more prevalent in sheep fed the lucerne-based diet. Five new species were identified. Two of these species exhibited very little sequence similarity to any cultivated methanogens and were found eight times in two of the six sheep that were grazing pasture. These unique sequences appear to represent a novel group of rumen archaea that are atypical for the rumen environment.  相似文献   

13.
Association patterns between archaea and rumen protozoa were evaluated by analyzing archaeal 16S rRNA gene clone libraries from ovine rumen inoculated with different protozoa. Five protozoan inoculation treatments, fauna free (negative control), holotrich and cellulolytic protozoa, Isotricha and Dasytricha spp., Entodinium spp., and total fauna (type A) were tested. We used denaturing gradient gel electrophoresis, quantitative PCR, and phylogenetic analysis to evaluate the impact of the protozoan inoculants on the respective archaeal communities. Protozoan 18S ribosomal DNA clone libraries were also evaluated to monitor the protozoal population that was established by the inoculation. Phylogenetic analysis suggested that archaeal clones associated with the fauna-free, the Entodinium, and the type A inoculations clustered primarily with uncultured phylotypes. Polyplastron multivesiculatum was the predominant protozoan strain established by the holotrich and cellulolytic protozoan treatment, and this resulted predominantly in archaeal clones affiliated with uncultured and cultured methanogenic phylotypes (Methanosphaera stadtmanae, Methanobrevibacter ruminantium, and Methanobacterium bryantii). Furthermore, the Isotricha and Dasytricha inoculation treatment resulted primarily in archaeal clones affiliated with Methanobrevibacter smithii. This report provides the first assessment of the influence of protozoa on archaea within the rumen microbial community and provides evidence to suggest that different archaeal phylotypes associate with specific groups of protozoa. The observed patterns may be linked to the evolution of commensal and symbiotic relationships between archaea and protozoa in the ovine rumen environment. This report further underscores the prevalence and potential importance of a rather large group of uncultivated archaea in the ovine rumen, probably unrelated to known methanogens and undocumented in the bovine rumen.  相似文献   

14.
石玉  张燕鸿  杨红 《微生物学报》2009,49(12):1655-1659
摘要:【目的】利用非培养法对黑胸散白蚁(Reticulitermes chinensis Snyder)肠道共生古菌进行系统发育分析。【方法】采用古菌16S rDNA通用引物以黑胸散白蚁全肠DNA为模板扩增共生菌的16S rDNA并建立基因文库,对得到的基因序列进行系统发育分析。【结果】从黑胸散白蚁肠道得到5个不同的16S rDNA序列,它们之间的相似性为93.2%~99.2%,系统发育分析表明这5个16S rDNA序列代表的克隆分别与来源于黑胸散白蚁近缘种,栖北散白蚁和北美散白蚁肠道中的甲烷短杆菌克隆或  相似文献   

15.
Diversity of bacterial community in freshwater of Woopo wetland   总被引:1,自引:0,他引:1  
Diversity of bacterial community in water layer of Woopo wetland was investigated. Cultivable bacterial strains were isolated by the standard dilution plating technique and culture-independent 16S rRNA gene clones were obtained directly from DNA extracts of a water sample. Amplified rDNA restriction analysis (ARDRA) was applied onto both of the isolates and 16S rRNA gene clones. Rarefaction curves, coverage rate and diversity indices of ARDRA patterns were calculated. Representative isolates and clones of all the single isolate/clone phylotype were partially sequenced and analyzed phylogenetically. Sixty-four and 125 phylotypes were obtained from 203 bacterial isolates and 235 culture-independent 16S rRNA gene clones, respectively. Bacterial isolates were composed of 4 phyla, of which Firmicutes (49.8%) and Actinobacteria (32.0%) were predominant. Isolates were affiliated with 58 species. Culture-independent 16S rRNA gene clones were composed of 8 phyla, of which Proteobacteria (62.2%), Actinobacteria (15.5%), and Bacteroidetes (13.7%) were predominant. Diversity of 16S rRNA gene clones originated from cultivation-independent DNA extracts was higher than that of isolated bacteria.  相似文献   

16.
Bacterial communities in buffalo rumen were characterized using a culture-independent approach for a pooled sample of rumen fluid from 3 adult Surti buffaloes. Buffalo rumen is likely to include species of various bacterial phyla, so 16S rDNA sequences were amplified and cloned from the sample. A total of 191 clones were sequenced and similarities to known 16S rDNA sequences were examined. About 62.82% sequences (120 clones) had >90% similarity to the 16S rDNA database sequences. Furthermore, about 34.03% of the sequences (65 clones) were 85–89% similar to 16S rDNA database sequences. For the remaining 3.14%, the similarity was lower than 85%. Phylogenetic analyses were also used to infer the makeup of bacterial communities in the rumen of Surti buffalo. As a result, we distinguished 42 operational taxonomic units (OTUs) based on unique 16S r DNA sequences: 19 OTUs affiliated to an unidentified group (45.23% of total OTUs), 11 OTUs of the phylum Firmicutes, also known as the low G+C group (26.19%), 7 OTUs of theCytophaga-Flexibacter-Bacteroides phylum (16.66%), 4 OTUs of Spirochaetes (9.52%), and 1 OTU of Actinobacteria (2.38%). These include 10 single-clone OTUs, so Good’s coverage (94.76%) of 16S rRNA libraries indicated that sequences identified in the libraries represent the majority of bacterial diversity present in rumen.  相似文献   

17.
Wright AD  Toovey AF  Pimm CL 《Anaerobe》2006,12(3):134-139
Molecular diversity of rumen methanogens in sheep in Queensland, Australia was investigated using 16S rRNA gene libraries prepared from pooled rumen contents from nine merino sheep. A total of 78 clones were identified revealing 26 different sequences. Of these 26 sequences, eight sequences (15 clones) were 95-100% similar to cultivated methanogens belonging to the orders Methanobacteriales and Methanomicrobiales, and the remaining 18 phylotypes (63 clones) were 72-75% similar to Thermoplasma acidophilum and Thermoplasma volcanium. These unique sequences clustered within a distinct and strongly supported (100% bootstrap support) phylogenetic group, exclusively composed of sequences from uncharacterized archaea from very diverse anaerobic environments. Members of this unique group that were previously considered atypical for the rumen environment were the predominant clones.  相似文献   

18.
The molecular diversity of rumen methanogens in feedlot cattle and the composition of the methanogen populations in these animals from two geographic locations were investigated using 16S rRNA gene libraries prepared from pooled PCR products from 10 animals in Ontario (127 clones) and 10 animals from Prince Edward Island (114 clones). A total of 241 clones were examined, with Methanobrevibacter ruminantium accounting for more than one-third (85 clones) of the clones identified. From these 241 clones, 23 different 16S rRNA phylotypes were identified. Feedlot cattle from Ontario, which were fed a corn-based diet, revealed 11 phylotypes (38 clones) not found in feedlot cattle from Prince Edward Island, whereas the Prince Edward Island cattle, which were fed potato by-products as a finishing diet, had 7 phylotypes (42 clones) not found in cattle from Ontario. Five sequences, representing the remaining 161 clones (67% of the clones), were common in both herds. Of the 23 different sequences, 10 sequences (136 clones) were 89.8 to 100% similar to those from cultivated methanogens belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales, and the remaining 13 sequences (105 clones) were 74.1 to 75.8% similar to those from Thermoplasma volcanium and Thermoplasma acidophilum. Overall, nine possible new species were identified from the two clone libraries, including two new species belonging to the order Methanobacteriales and a new genus/species within the order Methanosarcinales. From the present survey, it is difficult to conclude whether the geographical isolation between these two herds or differences between the two finishing diets directly influenced community structure in the rumen. Further studies are warranted to properly assess the differences between these two finishing diets.  相似文献   

19.
A long-term monensin supplementation trial involving lactating dairy cattle was conducted to determine the effect of monensin on the quantity and diversity of rumen methanogens in vivo. Fourteen cows were paired on the basis of days in milk and parity and allocated to one of two treatment groups, receiving (i) a control total mixed ration (TMR) or (ii) a TMR with 24 mg of monensin premix/kg of diet dry matter. Rumen fluid was obtained using an ororuminal probe on day −15 (baseline) and days 20, 90, and 180 following treatment. Throughout the 6-month experiment, the quantity of rumen methanogens was not significantly affected by monensin supplementation, as measured by quantitative real-time PCR. The diversity of the rumen methanogen population was investigated using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA clone gene libraries. DGGE analysis at each sampling point indicated that the molecular diversity of rumen methanogens from monensin-treated cattle was not significantly different from that of rumen methanogens from control cattle. 16S rRNA gene libraries were constructed from samples obtained from the rumen fluids of five cows, with a total of 166 clones examined. Eleven unique 16S rRNA sequences or phylotypes were identified, five of which have not been recognized previously. The majority of clones (98.2%) belonged to the genus Methanobrevibacter, with all libraries containing Methanobrevibacter strains M6 and SM9 and a novel phylotype, UG3322.2. Overall, long-term monensin supplementation was not found to significantly alter the quantity or diversity of methanogens in the rumens of lactating dairy cattle in the present study.  相似文献   

20.
Fecal microbiota in six elderly individuals were characterized by the 16S rDNA libraries and terminal restriction fragment length polymorphism (T-RFLP) analysis. Random clones of 16S rRNA gene sequences were isolated after PCR amplification with universal primer sets from total genomic DNA extracted from feces of three elderly individuals. These clones were partially sequenced (about 500 bp). T-RFLP analysis was performed using 16S rDNA amplified from six subjects. The lengths of the terminal restriction fragment (T-RF) were analyzed after digestion by HhaI and MspI. Among 240 clones obtained, approximately 46% belonged to 27 known species. About 54% of the other clones were 56 novel "phylotypes" (at least 98% homology of clone sequence). These libraries included 83 species or phylotypes. In addition, about 13% (30 phylotypes) of these phylotypes were newly discovered in these libraries. A large number of species that are not yet known exist in the feces of elderly individuals. 16S rDNA libraries and T-RFLP analysis revealed that the majority of bacteria were Bacteroides and relatives, Clostridium rRNA cluster IV, IX, Clostridium rRNA subcluster XIVa, and "Gammaproteobacteria". The proportion of Clostridium rRNA subcluster XIVa was lower than in healthy adults. In addition, although Ruminococcus obeum and its closely related phylotypes were detected in high frequency in healthy young subjects, hardly any were detected in our elderly individuals. "Gammaproteobacteria" were detected at high frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号