首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis reaction of N α-benzoyl-L-arginine ethyl ester catalyzed by trypsin from pig pancreas was comparatively studied in an aqueous buffer solution and in the system of reversed micelles of Aerosol OT in octane (pH 8.5) to determine the mechanisms of influence of the enzyme microenvironment on the rate constants of the elementary stages of the enzymatic reaction. The temperature dependences of the catalytic constant k cat and the rate constant of the second order k cat/K m (s, catalysis efficiency) allowed the determination of the rate constants and the activation energy of elementary stages of the enzymatic reaction. It was revealed that a decrease in the efficiency of catalytic action of trypsin in reverse micelles in comparison with an aqueous solution is first of all determined by a decrease in the rate constant of formation of the enzyme-substrate complex k 1. Possible mechanisms of the effect of the microenvironment on the elementary stages of catalytic action of the enzyme are discussed.  相似文献   

2.
A study was carried out to determine the effect of trypsin on glucose transport into brain cells. Two suspensions of dissociated cells were prepared from the two brain hemispheres of adult rats—one using only mechanical means to dissociate the cells and one using trypsin. The use of trypsin for preparation of dissociated brain cells caused a marked reduction in the rate of transport of [1,2-3H]-2-deoxy-d-glucose compared to uptakes of this glucose analog by cells prepared without trypsin. Responses of the two cell preparations to inhibitors of glucose transport (cytochalasin B and phloretin) were similar. Rates of oxidation of [6-14C]glucose to14CO2 by trypsin-treated cells were nearly double those in cells prepared without trypsin. Electron microscopic examination of the two preparations revealed much less preservation of structural integrity if trypsin was used to prepare the cells. The findings suggest that trypsin alters cell structure and affects receptor-regulated events in brain cells.  相似文献   

3.
In vivo experiments with Sprague-Dawley rats were conducted in order to explore the influence of Cu2+, Zn2+ as well as of the combinations of both on the activity of trypsin. The solutions of the trace elements were given per os, the animals were killed 30 min after the applications, and the activity of trypsin was determined in the juice of the small intestine by usingN α-benzoyl-L-arginine-p-nitroanilide (L-BAPA) as the substrate. The activity of trypsin depends on the concentration of the trace elements. When Cu2+ ions are applied, there is a minimum activity at 10−5 mol Cu2+/L and a maximum at 10−4 mol Cu2+/L. When giving Zn2+ ions, a minimum of trypsin activity is found at 10−5 mol Zn2+/L and a maximum at 5×10−6 mol Zn2+/L. On the whole, the trypsin activity is lower when the Cu2+/Zn2+ combinations are applied compared to the addition of the single trace elements. On principle, a good conformity of the in vivo results was found with in vitro results.  相似文献   

4.
Neb-TMOF, the trypsin modulating oostatic factor of gray fleshfly Neobellieria bullata, is a hexapeptide with the following sequence: H-Asn-Pro-Thr-Asn-Leu-His-OH. It has been isolated from vitellogenic ovaries in 1994. TMOF, the newly discovered insect peptide, inhibits trypsin biosynthesis in the gut, lowers yolk polypeptide concentration in the hemolymph and strongly inhibits ecdysone biosynthesis by larval ring glands. It is interesting that this short non-protected peptide contains in its molecule two Asn residues at positions 1 and 4 and His at its C-terminus. To obtain information about the role of the His-6 and Asn-4 residues we synthesised two series of Neb-TMOF analogs, modified: (1) in position 6 by D-His (I), His(Bzl) (II) and Phe(p-X) derivatives, where X = NH2 (III), NO2 (IV), OEt (V) and OH (VI) and (2) in position 4 by such amino acid residues as Ser (VII), Thr (VIII), Gly (IX), Asp (X), Glu (XI) and D-Asn (XII). The influence of these peptides on trypsin biosynthesis in N. bullata was determined in vivo. In preliminary investigations, we found that Neb-TMOF, [Phe(NH2)6], and [Phe(NO2)6]-Neb-TMOF inhibited trypsin biosynthesis, whereas [D-His)6]- and [D-His(Bzl)6]-Neb-TMOF were inactive. In further biological studies performed in vitro on heart of Tenebrio molitor we found that Neb-TMOF and [Phe(p-NH2)6-Neb-TMOF showed weak cardioexcitatory activity, about 30% of the cardioexcitatory activity of proctolin, an insect neuromodulating peptide.  相似文献   

5.
A trypsin inhibitor, termed ovostatin, has been purified approximately 265-fold with 82% yield, from unfertilized eggs of the sea urchin Strongylocentrotus intermedius, using trypsin coupled Sepharose 4B as an affinity column for chromatography. The isolated ovostatin is homogeneous in sodium dodecyl sulfate/polyacrylamide gel electrophoresis, the estimated molecular weight being 20K–21.5K. Ovostatin inhibits preferentially trypsin-like endogenous protease purified from the eggs of the same species and bovine pancreatic trypsin and also bovine pancreatic chymotrypsin. Values of IC50 (amount causing 50% inhibition of enzymes) for trypsin-like protease purified from eggs of the same species, bovine pancreatic trypsin, and bovine pancreatic chymotrypsin, are 0.91 ± 0.13 μg/ml (4.55 ± 0.65 × 10?8 M), 3.0 ± 0.28 μg/ml (1.5 ± 0.14 × 10?7 M), and 4.8 ± 0.2 μg/ml (2.4 ± 0.1 × 10?7 M), respectively, in the experimental condition used. Kinetic studies indicate that ovostatin is a noncompetitive inhibitor of trypsin. The inhibitor is relatively heat labile. NaCl (0.025–0.01 M) enhances the inhibitor activity, whereas KCl is inhibitory. Ovostatin requires a low concentration of Ca2+ for activity. The activity is higher in unfertilized eggs than in fertilized eggs; total activity and specific activity in unfertilized eggs is about 1.67-fold and 1.85-fold higher than those in fertilized eggs, respectively. We believe that ovostatin may regulate the function of the cortical granule protease and other trypsin-like proteases that are activated in sea urchin eggs during fertilization.  相似文献   

6.
New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance.

The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu+2) introduced p-aminobenzamidine (pABA- Cu+2: guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu+2 preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (Kcat, Km, Kcat/Km), optimum pH and temperature of the trypsin-pABA-Cu+2 complex was also investigated.  相似文献   

7.
Two forms of urinary trypsin inhibitor (UTI-1 and UTI-2) were purified from pooled urine of normal male rats to apparent homogeneity by salting out, affinity chromatography, gel filtration, and reverse-phase HPLC. UTIs-1 and 2 were shown to be thermostable glycoproteins with the respective molecular weights of 22,000 and 18,000 estimated by SDS-PAGE. These inhibitors combined with bovine trypsin in a 1:1 molar ratio: the K d values were 2.5 × 10–10 and 2.3 × 10–10 M, respectively. Amino acid composition and sequence analysis indicated that UTI-1 corresponded to rat bikunin of which the amino acid sequence was deduced from a rat liver cDNA clone encoding 1-microglobulin [Lindqvist et al. (1992), Biochim. Biophys. Acta 1130, 63–67] except that the protein sequence seemed to lack C-terminal serine, and UTI-2 corresponded to UTI-1 lacking N-terminal 21 amino acid residues.  相似文献   

8.
Context: The Bowman-Birk inhibitors (BBIs) are currently investigated with renewed interest due to their therapeutic properties in cancer and other inflammatory disease treatment. The molecular mass of the BBI is a limitation, as sufficient amounts of the inhibitor do not reach the organs outside the gastrointestinal tract when administered orally.

Method: The anti-tryptic domain of HGI-III of horsegram (Dolichos biflorus) was cloned using the vector pET-20b (+) and expressed in E. coli BL21 (DE3) pLysS.

Results: Kinetic analysis of this anti-tryptic peptide (recombinant trypsin inhibitory domain (rTID)) reveals that it is a potent inhibitor of trypsin and human tryptase. The Ki (3.2?±?0.17?×?10?8 M) establishes a very high affinity to bovine trypsin. rTID inhibited human lung tryptase (IC50 3.78?±?0.23?×?10?7 M). The rTID is resistant to the digestive enzymes found in humans and animals.

Conclusion: These properties propagate further research on the use of rTID as a therapeutic for cancer and other related inflammatory diseases.  相似文献   

9.
It is well known that Ligupurpuroside B is a water-soluble polyphenolic compound and used to brew bitter tea with antioxidant activities. It acted as a stimulant to the central nervous system and a diuretic (increase the excretion of urine), was used to treat painful throat and high blood pressure, and also exerted weight-loss function. In this regard, a detailed investigation on the mechanism of interaction between Ligupurpuroside B and trypsin could be of great interest to know the pharmacokinetic behavior of Ligupurpuroside B and for the design of new analogues with effective pharmacological properties. Ligupurpuroside B successfully quenched the intrinsic fluorescence of trypsin via static quenching mechanism. The binding constants (Ka) at three temperatures (288, 298, and 308 K) were 1.7841?×?104, 1.6251?×?104 and 1.5483?×?104 L mol?1, respectively. Binding constants revealed the stronger binding interaction between Ligupurpuroside B and trypsin. The number of binding sites approximated to one, indicating a single class of binding for Ligupurpuroside B in trypsin. The enzyme activity result suggested that Ligupurpuroside B can inhibit trypsin activity. Thermodynamic results revealed that both hydrogen bonds and hydrophobic interactions play main roles in stabilization of Ligupurpuroside B-trypsin complex. Circular dichroism (CD) results showed that the conformation of trypsin changed after bound to ligupurpuroside B. Molecular docking indicated that Ligupurpuroside B can enter the hydrophobic cavity of trypsin and was located near Trp215 and Tyr228 of trypsin.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
Summary Neb-TMOF, the trypsin modulating oostatic factor of gray fleshflyNeobellieria bullata, is a hexapeptide with the following sequence: H-Asn-Pro-Thr-Asn-Leu-His-OH. It has been isolated from vitellogenic ovaries in 1994. TMOF, the newly discovered insect peptide, inhibits trypsin biosynthesis in the gut, lowers yolk polypeptide concentration in the hemolymph and strongly inhibits ecdysone biosynthesis by larval ring glands. It is interesting that this short non-protected peptide contains in its molecule two Asn residues at positions 1 and 4 and His at its C-terminus. To obtain information about the role of the His-6 and Asn-4 residues we synthesised two series of Neb-TMOF analogs, modified: (1) in position 6 byd-His (I), His(Bzl) (II) and Phe(p-X) derivatives, where X=NH2 (III), NO2 (IV), OEt (V) and OH (VI) and (2) in position 4 by such amino acid residues as Ser (VII), Thr (VIII), Gly (IX), Asp (X), Glu (XI) andd-Asn (XII). The influence of these peptides on trypsin biosynthesis inN. bullata was determinedin vivo. In preliminary investigations, we found that Neb-TMOF, [Phe(NH2)6], and [Phe(NO2)6]-Neb-TMOF inhibited trypsin biosynthesis, whereas [d-His)6]- and [d-His(Bzl)6]-Neb-TMOF were inactive. In further biological studies performedin vitro on heart ofTenebrio molitor were found that-TMOF and [Phe(p-NH2)6]-Neb-TMOF showed weak cardioexcitatory activity, about 30% of the cardioexcitatory activity of proctolin, an insect neuromodulating peptide.  相似文献   

11.
Amaranthus hypochondriacus plants were grown under three photosynthetic photon flux densities (PPFD). Mature plants grown at full sunlight (38.8 mol m–2 d–1) had higher maximum net photosynthetic rate (PN) and significantly higher leaf trypsin inhibitor activity than plants that developed under lower PPFD (19.4 and 12.8 mol m–2 d–1). In contrast, seeds collected from plants fully exposed to sunlight showed the lowest activity of trypsin inhibitor, higher rate of germination and susceptibility to infection by Aspergillus niger.  相似文献   

12.
Four methoxypolyethylene glycols (MPEG, molecular masses 350, 750, 2000 and 5000 Da), each activated by nitrophenyl chloroformate, were used to modify trypsin. Compared with the native trypsin, the MPEG-modified trypsin was more stable against temperature between 30°C and 70°C, longer chain of MPEG moiety corresponding to higher thermal stability. The T for the native and the modified trypsin (0.4 mg ml–1) was increased from 47°C to 66°C. The stabilization effect caused by MPEG modification was the result of decreasing in both the autolysis rate and the thermal denaturation rate. The thermodynamic analysis of the thermal denaturation process showed that the activation free energy (G*) of the native and the modified trypsin at 60°C was increased from 102.9 to 109.3 kJ mol–1; the activation enthalpy (H*) was increased from 57.4 to 86.9 kJ mol–1; the activation entropy (S*) was increased from –136 to –67 J molK–1. A possible explanation for the decreased thermal denaturation rate caused by MPEG modification was also discussed.  相似文献   

13.
Summary Dextran (MW=7.2×104), carboxymethylcellulose (MW=2.5×104, substitution degree=0.7) and Ficoll (MW=6.9×104) were derivatized with 1,4-diaminobutane and covalently attached to bovine pancreatic trypsin through a transglutaminase-catalysed reaction. The conjugates contained an average of 0.7–1.8 mol of polymers per mol of protein, and retained about 61–82% of the original esterolytic activity of trypsin. The optimum pH for trypsin was shifted to alkaline values after enzymatic glycosidation. The thermostability of the polymer–enzyme complexes was increased in about 13.7–50.0 °C over 10 min incubation. The prepared conjugates were also more stable against thermal incubation at different temperatures ranging from 50 °C to 60 °C. In comparison with native trypsin, the enzyme-polymer complexes were about 22- to 48-fold more resistant to autolytic degradation at pH 9.0. Transglutaminase-catalysed glycosidation also protected trypsin against denaturation in surfactant media, with 9- to 68–fold increased half-life times in the presence of 0.3% (w/v) sodium dodecylsulfate.  相似文献   

14.
d-glucosamine was conjugated to bovine trypsin by carbodiimide chemistry, involving a water-soluble carbodiimide and a succinimide ester, with the latter being to increase the yield of the conjugation. Mass spectrometric data suggested that several glycoforms were formed, with around 12 d-glucosamine moieties coupled to each trypsin molecule on average. The moieties were probably coupled to eight carboxyl groups (of glutamyl and aspartyl residues) and to four tyrosyl residues on the surface of the enzyme. The glycated trypsin possessed increased thermal stability. When compared with its unmodified counterpart, T50% was increased by 7 °C, thermal inactivation of the first step was increased 34%, and long-term stability assay revealed 71-times higher residual activity at 25 °C (without stabilizing Ca2+ ions in aqueous buffer) after 67 days. Furthermore, resistance against autolysis was increased almost two-fold. Altered functional properties of the glycated trypsin were also observed. The glycated trypsin was found to become increasingly basophilic, and was found to be slightly structurally altered. This was indicated by 1.2 times higher catalytic efficiency (kcat/Km) than unmodified trypsin against the substrate N-α-benzoyl-l-arginine-p-nitroanilide. Circular dichroism spectropolarimetry suggested a minor change in spatial arrangement of α-helix/helices, resulting in an increased affinity of the glycated trypsin for this small synthetic substrate.  相似文献   

15.
In the present study, trypsin from Plodia interpunctella (Hübner) is characterized to discover sequence, biochemical and structural features. This enzyme is purified by ion exchange chromatography using fast protein liquid chromatography on proteins from fifth‐instar larvae. The enzyme is optimally active at 50 °C and pH 11.0. The kinetic parameters (Km and Vmax) of the enzyme are 5.3 ± 0.6 µm and 31 ± 1.3 nmol min?1 mg?1, respectively (using Nα‐benzoyl‐l ‐arginine ρ‐nitroanilide hydrochloride as substrate). The enzyme is inhibited by the addition of Cu2+ and Mn2+, whereas it is activated by Li+ at high concentrations. Moreover, the enzyme is almost completely inhibited in the presence of Nα‐tosyl‐l ‐lysine chloromethyl ketone hydrochloride and phenylmethanesulphonyl fluoride. To understand some characteristics of P. interpunctella trypsin, including active site structure and alkaline pH profile, a reliable structural model of P. interpunctella trypsin is built based on the Fusarium oxisporum (Schlecht) trypsin cystal structure (Protein Data Bank code: 1GDU). The secondary structure content of the purified trypsin from near‐ultraviolet circular dichroism data shows considerable similarities with that of P. interpunctella trypsin predicted structure. Analysis of pKa values of active site residues, a type of amino acid residue in the active site cleft and the surface charges of the model and Tribolium castaneum (Herbst) trypsin structure as an insect species from different orders reveals some differences between them. These differences might effect on the microenvironment of the active site cleft and consequently shift its pH profile. The application of multiple theoretical and experimental techniques is well adapted to predict the enzyme structure with high accuracy and this could help in the design of a powerful inhibitor for trypsin with ideal properties.  相似文献   

16.
The Bowman—Birk type trypsin inhibitor, BBSTI-D, which appears in the cotyledons of germinated soybeans (Glycine max), was isolated in homogeneous form. BBSTI-D has an amino acid composition identical to the native Bowman—Birk soybean trypsin inhibitor (BBSTI-E) except for the loss of one glutamyl/glutaminyl residue and one aspartyl/asparaginyl residue. The amino-terminal sequence of BBSTI-D was identical to that of BBSTI-E. These data, as well as the compositions of the tryptic peptides from reduced carboxymethylated BBSTI-D, indicate that BBSTI-D is derived from BBSTI-E by the loss of the carboxyl-terminal residues Glu70—Asn71.  相似文献   

17.
A basic trypsin-subtilisin inhibitor has been isolated from the egg white of marine turtle (Caretta caretta Linn.) and purified to homogeneity by gel filtration followed by ion-exchange chromatography. It has a single polypeptide chain of 117 amino acid residues, having a molecular weight of 13,600. It lacks methionine and tryptophan. Its isoelectric point is atpH 10.0 and the sedimentation coefficient (s20,w) value of 1.62 S is independent of protein concentration. It has a Stokes radius of 18.8 Å, an intrinsic viscosity of 0.048 dl g–1 and a diffusion coefficient of 10.17×10–7 cm2 sec–1. Its fluorescence emission spectrum is similar to that of free tyrosine and the bimolecular quencing rate constant of its tyrosine residues with acrylamide is 3.15×109 M–1 sec–1. The inhibitor strongly inhibits both trypsin and subtilisin by forming enzyme-inhibitor complexes at a molar ratio of unity. The nature of inhibition toward both enzymes is not temporary. It has independent binding sites for inhibition of trypsin and subtilisin. Chemical modification with tetranitromethane suggests the presence of three tyrosine residues on the surface of the inhibitor molecule.  相似文献   

18.
Kunitz-type trypsin inhibitors bind to the active pocket of trypsin causing its inhibition. Plant Kunitz-type inhibitors are thought to be important in defense, especially against insect pests. From sequence analysis of various Kunitz-type inhibitors from plants, we identified CaTI2 from chickpea as a unique variant lacking the functionally important arginine residue corresponding to the soybean trypsin inhibitor (STI) and having a distinct and unique inhibitory loop organization. To further explore the implications of these sequence variations, we obtained the crystal structure of recombinant CaTI2 at 2.8Å resolution. It is evident from the structure that the variations in the inhibitory loop facilitates non-substrate like binding of CaTI2 to trypsin, while the canonical inhibitor STI binds to trypsin in substrate like manner. Our results establish the unique mechanism of trypsin inhibition by CaTI2, which warrant further research into its substrate spectrum. Abbreviations BApNA Nα-Benzoyl-L-arginine 4-nitroanilide

BPT bovine pancreatic trypsin

CaTI2 Cicer arietinum L trypsin inhibitor 2

DrTI Delonix regia Trypsin inhibitor

EcTI Enterolobium contortisiliquum trypsin inhibitor

ETI Erythrina caffra trypsin inhibitor

KTI Kunitz type inhibitor

STI soybean trypsin inhibitor

TKI Tamarindus indica Kunitz inhibitor

Communicated By Ramaswamy H. Sarma  相似文献   


19.
The spinach (Spinacia oleracea L.) leaf plasma membrane Ca2+-ATPase is regulated by calmodulin (3-fold stimulation) and limited proteolysis (trypsin; 4-fold stimulation). The plasma membrane Ca2+-ATPase was identified as a 120-kDa polypeptide on western immunoblots using two different antibodies. During trypsin treatment the 120-kDa band diminished and a new band appeared at 109 kDa. The appearance of the 109-kDa band correlated with the increase in enzyme activity following trypsin treatment. The stimulations by calmodulin and trypsin were not additive, suggesting that the 109-kDa polypeptide represents a Ca2+-ATPase lackin a terminal fragment involved in calmodulin regulation. This was confirmed by 125I-calmodulin overlay studies where calmodulin labeled the 120-kDa band in the presence of Ca2+, while the 109-kDa band did not bind calmodulin. The effects of calmodulin and limited proteolysis on ATP-dependent accumulation of 45Ca2+ in isolated inside-out plasma membrane vesicles were studied, and kinetical analyses performed with respect to Ca2+ and ATP. Calmodulin increased the Vmax. for Ca2+ pumping 3-fold, and reduced Km for Ca2+ from 1.6 to 0.9 µM. The Km for ATP (11 µM) was not affected by calmodulin. The effects of limited proteolysis on the affinities for Ca2+ and ATP were similar to those obtained with calmodulin. Notably, however, limited proteolysis increased the Vmax. for Ca2+ pumping to a higher extent than calmodulin, indicating incomplete calmodulin activation, or removal of an additional inhibitory site by trypsin.  相似文献   

20.
The semisynthesis of homologues of aprotinin, the bovine pancreatic trypsin inhibitor, is described. The P1 lysine15 residue was replaced by two methods. The first procedure, which consisted of two enzymatic steps for the incorporation of other amino acids has previously been described. The second approach consisted of six steps of both enzymatic and chemical nature. The modified inhibitor, in which the lysine15-alanine16 peptide bond is hydrolyzed, was used as the starting material. All carboxyl groups of the modified inhibitor were esterified with methanol; the lysine15 methylester group was then selectively hydrolyzed. Afterward, lysine15 itself was split off. Arginine, glutamic acid, methionine, andl-2-aminohexanoic acid (norleucine, Nle) were incorporated using water-soluble carbodiimide combined with an acylation catalyst. The methylester group was used to prevent polymerization. The reactive-site peptide bonds were resynthesized using either chymotrypsin or trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号