首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic stellate cells (HSCs) are the major site of retinol (ROH) metabolism and storage. GRX is a permanent murine myofibroblastic cell line, derived from HSCs, which can be induced to display the fat-storing phenotype by treatment with retinoids. Little is known about hepatic or serum homeostasis of beta-carotene and retinoic acid (RA), although the direct biogenesis of RA from beta-carotene has been described in enterocytes. The aim of this study was to identify the uptake, metabolism, storage, and release of beta-carotene in HSCs. GRX cells were plated in 25 cm(2) tissue culture flasks, treated during 10 days with 3 micromol/L beta-carotene and subsequently transferred into the standard culture medium. beta-Carotene induced a full cell conversion into the fat-storing phenotype after 10 days. The total cell extracts, cell fractions, and culture medium were analyzed by reverse phase high-performance liquid chromatography for beta-carotene and retinoids. Cells accumulated 27.48 +/- 6.5 pmol/L beta-carotene/10(6) cells, but could not convert it to ROH nor produced retinyl esters (RE). beta-Carotene was directly converted to RA, which was found in total cell extracts and in the nuclear fraction (10.15 +/- 1.23 pmol/L/10(6) cells), promoting the phenotype conversion. After 24-h chase, cells contained 20.15 +/- 1.12 pmol/L beta-carotene/10(6) cells and steadily released beta-carotene into the medium (6.69 +/- 1.75 pmol/ml). We conclude that HSC are the site of the liver beta-carotene storage and release, which can be used for RA production as well as for maintenance of the homeostasis of circulating carotenoids in periods of low dietary uptake.  相似文献   

2.
Connective tissue cells of liver parenchyma (perisinusoidal myofibroblasts) can be induced to express the lipocyte (Ito cell) phenotype. We have studied phospholipid synthesis and phosphate incorporation during this in vitro conversion, induced by insulin and/or indomethacin, in the established murine cell line GRX. Phospholipid synthesis, measured by [14C]acetate incorporation, was increased after a full induction of the lipocyte phenotype. The 32Pi incorporation into phospholipids was increased from the beginning of induction. Phosphatidic acid and phosphatidylinositol synthesis were increased early in the induction, whilst the increase of major constitutive phospholipids was significant only after the full lipocyte phenotype induction. The presence of unsaturated fatty acids in phospholipids was increased in lipocytes. Linoleic acid was present only in diacylglycerols and in phosphatidylinositol. Since we have shown previously that linoleic acid was not present in triacylglycerols, this result indicates the importance of future studies on activation of phosphatidylinositol cycles in induction of lipocyte phenotype in liver connective tissue cells.  相似文献   

3.
Retinol is stored in liver, and the dynamic balance between its accumulation and mobilization is regulated by hepatic stellate cells (HSC). Representing less than 1% total liver protein, HSC can reach a very high intracellular retinoid (vitamin-A and its metabolites) concentration, which elicits their conversion from the myofibroblast to the fat-storing lipocyte phenotype. Circulating retinol is associated with plasma retinol-binding protein (RBP) or bovine serum albumin (BSA). Here we have used the in vitro model of GRX cells to compare incorporation and metabolism of BSA versus RBP associated [(3)H]retinol in HSC. We have found that lipocytes, but not myofibroblasts, expressed a high-affinity membrane receptor for RBP-retinol complex (KD = 4.93 nM), and both cell types expressed a low-affinity one (KD = 234 nM). The RBP-retinol complex, but not the BSA-delivered retinol, could be dislodged from membranes by treatments that specifically disturb protein-protein interactions (high RBP concentrations). Under both conditions, treatments that disturb the membrane lipid layer (detergent, cyclodextrin) released the membrane-bound retinol. RBP-delivered retinol was found in cytosol, microsomal fraction and, as retinyl esters, in lipid droplets, while albumin-delivered retinol was mainly associated with membranes. Disturbing the clathrin-mediated endocytosis did not interfere with retinol uptake. Retinol derived from the holo-RBP complex was differentially incorporated in lipocytes and preferentially reached esterification sites close to lipid droplets through a specific intracellular traffic route. This direct influx pathway facilitates the retinol uptake into HSC against the concentration gradients, and possibly protects cell membranes from undesirable and potentially noxious high retinol concentrations.  相似文献   

4.
Fat-storing cells and endothelial cells of the liver sinusoids play important roles in the biosynthesis and degradation of hyaluronan (HYA). These cells were isolated from rat liver by a simple and rapid procedure involving: (1) cell separation by centrifugation on a Nycodenz gradient, after dispersion of the liver cells by collagenase perfusion; (2) further purification of the cells by centrifugation on a discontinuous Percoll gradient; and (3) culturing of the cells, taking advantage of the different time that seeded cells need for attachment to plastic surfaces. We have determined the effects of two isoforms of platelet-derived growth factor (PDGF), PDGF-BB and PDGF-AA, on HYA production by the original fat-storing cells, as well as by fat-storing cells which had changed in vitro to myofibroblast-like cells. PDGF-BB was found to stimulate HYA synthesis in both types of cells with a maximal response equal to that obtained with 10% fetal calf serum. PDGF-AA had no stimulatory effect on HYA production. Fat-storing cells and their modified myofibroblast-like phenotype bound specifically to 125I-PDGF-BB, but not to 125I-PDGF-AA, indicating that they had PDGF beta-receptors, but not alpha-receptors. In contrast, liver endothelial cells were found to have PDGF alpha-receptors, but not beta-receptors.  相似文献   

5.
Summary A continuous murine cell line (GRX) was obtained from fibrotic granulomas induced in C3H/HeN mice liver by experimental infection withSchistosoma mansoni. This anchorage-dependent line produces composite connective tissue/extracellular matrix, displays morphological characteristics of myofibroblasts, and can, under appropriate conditions, accumulate fat droplets. GRX cells produce viral particles of retrovirus type. We consider GRX cell line to be representative of liver connective tissue cells, responsible for fibroplasia in liver fibrotic and granulomatous reactions. This research was supported by Centre National de la Recherche Scientifique, France; Financiadora de Estudos e Projetos (FINEP), Brasil; and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasil.  相似文献   

6.
《The Journal of cell biology》1994,127(6):2037-2048
We have examined the cell-specific expression of two fibronectin isoforms, EIIIA and EIIIB, during experimental hepatic fibrosis induced by ligation of the biliary duct. AT the mRNA level, EIIIA and EIIIB were undetectable in normal liver but expressed early injury, preceding fibrosis. The cellular sources of these changes were determined by fractionating the liver at various time points after bile duct ligation into its constituent cell populations and extracting RNA from the fresh isolates. EIIIA-containing fibronectin mRNA was undetectable in normal sinusoidal endothelial cells but increased rapidly within 12 h of injury. By contrast, the EIIIB form was restricted to hepatic lipocytes (Ito or fat-storing cells) and appeared only after a lag of 12-24 h: it was minimal in sinusoidal endothelial cells. Both forms were minimal in hepatocytes. At the protein level, EIIIA-containing fibronectin was markedly increased within two days of injury and exhibited a sinusoidal distribution. Secretion of this form by endothelial cells was confirmed in primary culture. Matrices deposited in situ by endothelial cells from injured liver accelerated the conversion ("activation") of normal lipocytes to myofibroblast-like cells, and pretreatment of matrices with monoclonal antibody to the EIIIA segment blocked this response. Finally, recombinant fibronectin peptide containing the EIIIA segment was stimulatory to lipocytes in culture. We conclude that expression of EIIIA fibronectin by sinusoidal endothelial cells is a critical early event in the liver's response to injury and that the EIIIA segment is biologically active, mediating the conversion of lipocytes to myofibroblasts.  相似文献   

7.
Sphingolipids play a relevant role in cell-cell interaction, communication, and migration. We studied the sphingolipid content in the murine hepatic stellate cell line GRX, which expresses the myofibroblast phenotype, and can be induced in vitro to display the fat-storing phenotype. Lipid modifications along this induction were investigated by labeling sphingolipids with [(14)C]galactose, [(14)C]serine, or [(14)C]choline, and determination of fatty acid composition of sphingomyelin. The total ganglioside content and the GM2 synthase activity were lower in myofibroblasts. Both phenotypes presented similar gangliosides of the a-pathway: GM2, GM1, and GD1a as well as their precursor GM3. Sphingomyelin and all the gangliosides were expressed as doublets; the upper/lower band ratio increased in lipocytes, containing more long-chain fatty acids in retinol-induced lipocytes as compared to the insulin/indomethacin induced ones. Time-course experiments indicated a transfer of metabolic precursors from phosphatidylcholine to sphingomyelin in the two phenotypes. Taken together, these results indicate that myofibroblast and lipocytes can use distinct ceramide pools for sphingolipid synthesis. Differential ganglioside expression and presence of the long-chain saturated fatty acids suggested that they may participate in formation of distinct membrane microdomains or rafts with specific functions on the two phenotypes of GRX-cells.  相似文献   

8.
HSCs (hepatic stellate cells) (also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells or Ito cells) exist in the space between parenchymal cells and liver sinusoidal endothelial cells of the hepatic lobule and store 50-80% of vitamin A in the whole body as retinyl palmitate in lipid droplets in the cytoplasm. In physiological conditions, these cells play pivotal roles in the regulation of vitamin A homoeostasis. In pathological conditions, such as hepatic fibrosis or liver cirrhosis, HSCs lose vitamin A and synthesize a large amount of extracellular matrix components including collagen, proteoglycan, glycosaminoglycan and adhesive glycoproteins. Morphology of these cells also changes from the star-shaped SCs (stellate cells) to that of fibroblasts or myofibroblasts. The hepatic SCs are now considered to be targets of therapy of hepatic fibrosis or liver cirrhosis. HSCs are activated by adhering to the parenchymal cells and lose stored vitamin A during hepatic regeneration. Vitamin A-storing cells exist in extrahepatic organs such as the pancreas, lungs, kidneys and intestines. Vitamin A-storing cells in the liver and extrahepatic organs form a cellular system. The research of the vitamin A-storing cells has developed and expanded vigorously. The past, present and future of the research of the vitamin A-storing cells (SCs) will be summarized and discussed in this review.  相似文献   

9.
Stromal cells with a myofibroblast phenotype present in the normal human esophagus are increased in individuals with gastro-esophageal reflux disease (GERD). We have previously demonstrated that myofibroblasts stimulated with acid and TLR4 agonists increase IL-6 and IL-8 secretion using primary cultures of myofibroblasts established from normal human esophagus. While primary cultures have the advantage of reflecting the in vivo environment, a short life span and unavoidable heterogeneity limits the usefulness of this model in larger scale in vitro cellular signaling studies. The major aim of this paper therefore was to generate a human esophageal myofibroblast line with an extended lifespan. In the work presented here we have generated and characterized an immortalized human esophageal myofibroblast line by transfection with a commercially available GFP-hTERT lentivirus. Immortalized human esophageal myofibroblasts demonstrate phenotypic, genotypic and functional similarity to primary cultures of esophageal myofibroblasts we have previously described. We found that immortalized esophageal myofibroblasts retain myofibroblast spindle-shaped morphology at low and high confluence beyond passage 80, and express α-SMA, vimentin, and CD90 myofibroblast markers. Immortalized human esophageal myofibroblasts also express the putative acid receptor TRPV1 and TLR4 and retain the functional capacity to respond to stimuli encountered in GERD with secretion of IL-6. Finally, immortalized human esophageal myofibroblasts also support the stratified growth of squamous esophageal epithelial cells in 3D organotypic cultures. This newly characterized immortalized human esophageal myofibroblast cell line can be used in future cellular signaling and co-culture studies.  相似文献   

10.
The myofibroblast is a stromal cell of the gastrointestinal (GI) tract that has been gaining considerable attention for its critical role in many GI functions. While several myofibroblast cell lines are commercially available to study these cells in vitro, research results from a cell line exposed to experimental cell culture conditions have inherent limitations due to the overly reductionist nature of the work. Use of primary myofibroblasts offers a great advantage in terms of confirming experimental findings identified in a cell line. Isolation of primary myofibroblasts from an animal model allows for the study of myofibroblasts under conditions that more closely mimic the disease state being studied. Isolation of primary myofibroblasts from human colon tissue provides arguably the most relevant experimental data, since the cells come directly from patients with the underlying disease. We describe a well-established technique that can be utilized to isolate primary myofibroblasts from both mouse and human colon tissue. These isolated cells have been characterized to be alpha-smooth muscle actin and vimentin-positive, and desmin-negative, consistent with subepithelial intestinal myofibroblasts. Primary myofibroblast cells can be grown in cell culture and used for experimental purposes over a limited number of passages.  相似文献   

11.
Highly purified sinusoidal (fat-storing, Kupffer and endothelial cells) and parenchymal cells were isolated to assess the cellular distribution of vitamin A in liver of adult vitamin A-sufficient rats. A modified simple procedure was developed for the purification of fat-storing cells from rat liver. This was achieved by a single centrifugation step in a two-layer density Nycodenz gradient. Endothelial and Kupffer cells were obtained from the same gradient and further purified by centrifugal elutriation. Reverse-phase HPLC analysis showed that fat-storing cells contained about 300-fold the amount of retinyl esters present in parenchymal cells on a mg cell protein basis. In fat-storing cells, the same retinyl esters, viz. retinyl palmitate, retinyl stearate and retinyl oleate, were present as in whole liver. It was also observed that, within 12 h after intravenous injection of chylomicron [3H]retinyl ester, most of the radioactivity had accumulated in the fat-storing cells. It is concluded that fat-storing cells are the main storage sites for vitamin A in rat liver.  相似文献   

12.
Side-population (SP) cells have been shown to be highly enriched stem cells. We investigated whether an immortalized, nontumorigenic human liver cell line, THLE-5b, contains SP cells. Flow cytometry analysis after Hoechst 33342 staining demonstrated that the THLE-5b line contained a small component of SP cells. These SP cells were essentially eliminated by treatment with verapamil and expressed higher levels of ABCG2 mRNA than non-SP cells. In addition, the level of these SP cells detected by Hoechst 33342 staining was affected by the experimental conditions including the incubation medium. This is the first report of the presence of SP cells in the immortalized, nontumorigenic human liver cell line.  相似文献   

13.
Hepatic stellate cells (HSCs), also referred to as Ito cells, perisinusiodal cells and fat-storing cells, have numerous vital functions. They are the main extracellular matrix-producing cells within the liver and are involved in the storage of retinol. HSCs are also known to secrete a number of liver mitogens. Current isolation techniques are cumbersome and most require a pronase digestion step, which destroys any hepatocytes present. We present a simple method for isolation and culture of hepatic stellate cells from the normally discarded washings from a two-step collagenase hepatocyte isolation, which has shown a yield of more than 1.5 × 106 viable HSCs after 5 days in culture. The cells were positively identified as HSCs by staining for two intermediate filaments (desmin and GFAP) and observing their distinct morphology from other liver cell types. This efficient method allows rapid and consistent isolation of stellate cells to give a culture that may be passaged several times.  相似文献   

14.
It is now well documented that lecithin-retinol acyltransferase (LRAT) is the physiologically important enzyme activity involved in the esterification of retinol in the liver. However, no information regarding the cellular distribution of this enzyme in the liver is presently available. This study characterizes the distribution of LRAT activity in the different types of rat liver cells. Purified preparations of isolated parenchymal, fat-storing, and Kupffer + endothelial cells were isolated from rat livers and the LRAT activity present in microsomes prepared from each of these cell fractions was determined. The fat-storing cells were found to contain the highest level of LRAT specific activity (383 +/- 54 pmol retinyl ester formed min-1.mg-1 versus 163 +/- 22 pmol retinyl ester formed min-1.mg-1 for whole liver microsomes). The level of LRAT specific activity in parenchymal cell microsomes (158 +/- 53 pmol retinyl ester formed min-1.mg-1) was very similar to LRAT levels in whole liver microsomes. The Kuppfer + endothelial cell microsome fractions were found to contain LRAT, at low levels of activity. These results indicate that the fat-storing cells are very enriched in LRAT but the parenchymal cells also posses significant levels of LRAT activity.  相似文献   

15.
We have examined retinol esterification in the established GRX cell line, representative of hepatic stellate cells, and in primary cultures of ex vivo purified murine hepatic stellate cells. The metabolism of [3H]retinol was compared in cells expressing the myofibroblast or the lipocyte phenotype, under the physiological retinol concentrations. Retinyl esters were the major metabolites, whose production was dependent upon both acyl-CoA:retinol acyltransferase (ARAT) and lecithin:retinol acyltransferase (LRAT). Lipocytes had a significantly higher esterification capacity than myofibroblasts. In order to distinguish the intrinsic enzyme activity from modulation of retinol uptake and CRBP-retinol content of the cytosol in the studied cells, we monitored enzyme kinetics in the purified microsomal fraction. We found that both LRAT and ARAT activities were induced during the conversion of myofibroblasts to lipocytes. LRAT induction was dependent upon retinoic acid, while that of ARAT was dependent upon the overall induction of the fat storing phenotype. The fatty acid composition of retinyl-esters suggested a preferential inclusion of exogenous fatty acids into retinyl esters. We conclude that both LRAT and ARAT participate in retinol esterification in hepatic stellate cells: LRAT's activity correlates with the vitamin A status, while ARAT depends upon the availability of fatty acyl-CoA and the overall lipid metabolism in hepatic stellate cells.  相似文献   

16.
The levels of retinoids, retinol-binding protein, cellular retinol-binding protein, cellular retinoic-acid-binding protein, transthyretin and the activities of retinyl palmitate hydrolase and cholesteryl oleate hydrolase were determined in purified parenchymal, fat-storing, endothelial and Kupffer cell preparations, and in liver homogenates from young adult (6-month-old) and old (36-month-old) rats. Retinoid levels were also determined in the plasma from young and old rats. Retinoid contents were determined by HPLC. The binding proteins and transthyretin were measured by specific radioimmunoassays; retinyl palmitate and cholesterol oleate hydrolases were measured by sensitive microassays. The retinoid content of both the liver homogenates and of the fat-storing, and parenchymal cell preparations increased between 6 months and 36 months of age. The cellular distribution of retinoids was similar for the two age groups analyzed with the fat-storing cells being the main retinoid storage sites in the rat liver. Concentrations of retinol-binding protein and transthyretin were high in parenchymal cell preparations. Cellular retinol-binding protein was enriched both in parenchymal and in fat-storing cell preparations; the highest concentrations of cellular retinoic-acid-binding protein were present in fat-storing cell preparations. No major differences were observed between the two age groups in the cellular concentrations and distributions of any of these binding proteins. High activity of cholesterol oleate hydrolase was measured in parenchymal and in Kupffer cell preparations; endothelial cell preparations also contained considerable activities. The distribution of this activity over the various cell types reflects their role in lipoprotein metabolism. Retinyl palmitate hydrolase activity was specifically enriched in parenchymal and in fat-storing cell preparations, consistent with the roles of these cells in retinoid metabolism. No major differences were observed between the two age groups in the cellular distributions of the two hydrolase activities. This study indicates that no major changes occur in the retinoid-related parameters analyzed with age, suggesting that rat liver retinoid metabolism does not change dramatically with age and that retinoid homeostasis is maintained.  相似文献   

17.
Thy-1, a glycophosphatidylinositol-linked glycoprotein of the outer membrane leaflet, has been described in myofibroblasts of several organs. Previous studies have shown that, in fetal liver, Thy-1 is expressed in a subpopulation of ductular/progenitor cells. The aim of this study has been to investigate whether the liver myofibroblasts belong to the Thy-1-positive subpopulation of the adult liver. The expression of Thy-1 has been studied in normal rat liver, in the rat liver regeneration model following 2-acetylaminofluorene treatment and partial hepatectomy (AAF/PH), and in isolated rat liver cells, at the mRNA and protein levels. In normal rat liver, Thy-1 is detected in sparse cells of the periportal area, whereas 7 days after PH in the AAF/PH model, a marked increase of the number of Thy-1-positive cells is detectable by immunohistochemistry. Comparative immunohistochemical analysis has revealed the co-localization of Thy-1 and smooth muscle actin, but not of Thy-1 and cytokeratin-19, both in normal rat liver and in the AAF/PH model. Investigation of isolated rat liver cell populations has confirmed that liver myofibroblasts are Thy-1-positive cells, whereas hepatocytes, hepatic stellate cells, and liver macrophages are not. Thy-1 is the first cell surface marker for identifying liver myofibroblasts in vivo and in vitro. Jozsef Dudas and Tümen Mansuroglu contributed equally to this study. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 402, projects C6, D3, D4).  相似文献   

18.
Myofibroblasts play an important role in morphogenesis, inflammation, and fibrosis in most tissues. The amniotic membrane stroma can maintain keratocytes in cultures and prevent them from differentiating into myofibroblasts. However, it is unknown whether the AM stroma can also reverse differentiated myofibroblasts. In this study, we found that amniotic membrane stromal cells (AMSCs), which adopted fibroblastic phenotype in vivo, quickly and completely differentiated into myofibroblasts during ex vivo culture in DMEM/FBS on plastic within 2 passages. When cultured on type I collagen, the myofibroblasts maintained their phenotype, however, when these myofibroblasts were re-seeded onto a cryopreserved amniotic membrane stromal surface, they reversed to the fibroblast phenotype. Moreover, we found that the amniotic membrane stromal extract not only helps maintain primary AMSCs fibroblastic phenotype in vitro, but also can reverse differentiated myofibroblasts back to fibroblasts. This reversal was not coupled with cell proliferation. We concluded that the amniotic membrane stroma contains soluble factors that can regulate the mesenchymal cell differentiation. Further investigation into the identity of these factors and the control mechanisms may unravel a new scar-reversing strategy.  相似文献   

19.
Summary There is now substantial evidence that perisinusoidal (Ito or fat-storing) cells are the principal source of extracellular matrix proteins during hepatic fibrogenesis. In rat liver these cells express the intermediate fiament protein desmin; this is now widely used as an immunohistochemical marker for these cells. It has been shown that in experimental models of acute and chronic liver injury there is an increase in the number of desmin-positive perisinusoidal cells prior to the deposition of matrix proteins; however, these studies have failed to establish whether local proliferation is involved in this expansion of the desmin-positive perisinusoidal cell population.In order to investigate the kinetics of the perisinusoidal cell response, we have developed a novel double-labelling immunohistochemical technique for the simultaneous demonstration of desmin and incorporated bromodeoxyuridine in proliferating perisinusoidal cells in sections of fixed paraffiin-embedded rat liver. Application of this technique to a model of acute liver injury (single dose carbon tetrachloride by gavage) has shown that expansion of the perisinusoidal cell population is contributed to by local proliferation, with a labelling index of 18.7% 2 days following injury.  相似文献   

20.
Collagen XVI, by structural analogy a member of the FACIT- (fibril-associated collagens with interrupted triple helices) family of collagens, is described as a minor collagen component of connective tissues. Collagen XVI is expressed in various cells and tissues without known occurrence of splice variants or isoforms. For skin and cartilage tissues its suprastructure is known. Presumably, there it acts as an adaptor protein connecting and organizing large fibrillar networks and thus modulates integrity and stability of the extracellular matrix (ECM).Collagen XVI is produced by myofibroblasts in the normal intestine and its synthesis is increased in the inflamed bowel wall where myofibroblasts develop increased numbers of focal adhesion contacts on collagen XVI. Consequently, recruitment of α1 integrin into the focal adhesions at the tip of the cells is induced followed by increased cell spreading on collagen XVI. This presumably adds to the maintenance of myofibroblasts in the inflamed intestinal regions and thus promotes fibrotic responses of the tissue. Notably, α1/α2 integrins interact with collagen XVI through an α1/α2β1 integrin binding site located in the COL 1–3 domains.Collagen XVI may act as a substrate for adhesion and invasion of connective tissue tumor cells. In glioblastoma it induces tumor invasiveness by modification of the β1-integrin activation pattern. Thus, altering the cell–matrix interaction through collagen XVI might be a molecular mechanism to further augment the invasive phenotype of glioma cells. In this line, in oral squamous cell carcinoma collagen XVI expression is induced which results in an upregulation of Kindlin-1 followed by an increased interaction with beta1-integrin. Consequently, collagen XVI induces a proliferative tumor phenotype by promoting an early S-phase entry.In summary, collagen XVI plays a decisive role in the interaction of connective tissue cells with their ECM, which is impaired in pathological situations. Alteration of tissue location and expression level of collagen XVI appears to promote tumorigenesis and to perpetuate inflammatory reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号