首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
"Substrate inhibition", which has been described earlier for myosin Ca-ATPase in low ionic strength KCl solution [1], is found to take place also at high KCl concentration and under partial modification of enzyme thiol groups with p-CMB. "Substrate inhibition" disappeared when increasing Ca2+ concentration up to 25-40 mM. These kinetic properties are characteristic for fresh isolated enzyme and myosin preparations stored in 0.5 M KCl. They may change under storage of enzyme preparations at higher KCl concentrations: no "substrate inhibition" is observed after 6-8-day storage of myosin preparations in 3 M KCl at the presence of 4-5 mM CaCl2. The data on optical rotation dispersion and analytical ultracentrifugation have shown that the storage of myosin in 3 M KCl is accompanied by structural changes of the protein.  相似文献   

2.
The increase in temperature leads to a decrease in pKa of the group responsible for the activation of CaATP2- hydrolysis by myosin in the alkaline zone of pH. At 20-25 degrees the pKa value is about 9. The value of ionization heat (deltaHi) calculated from pKa temperature dependence is 7.6+/-+/-0.8 kcal/mol. These values are approximated to the values known for phenol hydroxyl of tyrosine. It has been demonstrated that the acceleration of CaATP2- hydrolysis at alkaline values of pH is accompanied by an increase in the Arrhenius energy of activation (Ea), determined from the temperature dependence of the maximal reaction rate (V). The increase of Ea at alkaline values of pH is apparent and is due to an increase in the concentration of a deprotonized form of the enzyme, having a higher activity. A comparison of activation parameters of the reaction at alkaline and neutral values of pH permits to conclude that the acceleration of CaATP2- hydrolysis at alkaline values of pH is due to the acceleration of the limiting step of the reaction. It has also been found that at alkaline values of pH the power of myosin binding with ADP, a competitive inhibitor and the reaction product, is decreased. It is assumed that the acceleration of ATP hydrolysis at alkaline values of pH is due to accelerated dissociation of the reaction products from the active centre of the enzyme, as a result of ionization of a functional group of myosin, probably of the tyrosine residue.  相似文献   

3.
The kinetics of the fluorescence enhancement and the transient release of H+ caused by the binding of ADP to the active center of myosin has been compared to that caused by myosin-ATP interaction. The results show that both the time courses of the fluorescence enhancement and the transient H+ release caused by ADP binding, like that caused by ATP hydrolysis in the initial burst, are monophasic exponential processes. The fact that the rates of these two processes are also equal suggests that they both reflect the same mechanistic event in the mechanism of ADP binding. The kinetics of ADP binding as measured by the fluorescence enhancement and the H+ release is different from that of ATP. This is in agreement with our previous finding that the enhancement of fluorescence and the transient release of H+, in the case of ATP, reflect the initial burst of ATP hydrolysis, whereas in the case of ADP, they represent a conformational change in the myosin-ADP complex. The magnitude of the H+ transient caused by the initial burst is approximately equal to that caused by ADP binding. The amplitude of the fluorescence enhancement caused by ADP binding is equal to one-third of that caused by the initial burst.  相似文献   

4.
5.
A crucial point for mechanical force generation in actomyosin systems is how the energy released by ATP hydrolysis in the myosin motor domain gives rise to the movement of the myosin head along the actin filament. We assumed the signal of the ATP hydrolysis to be transmitted as modulated atomic vibrations from the nucleotide-binding site throughout the myosin head, and carried out 1-ns all-atom molecular dynamics simulations for that signal transmission. We distributed the released energy to atoms located around the ATPase pocket as kinetic energies and examined how the effect of disturbance extended throughout the motor domain. The result showed that the disturbance signal extended over the motor domain in 150 ps and induced slowly varying collective motions of atoms at the actin-binding site and the junction with the neck, both of which are relevant to the movement of the myosin head along the actin filament. We also performed a principal component analysis of thermal atomic motions for the motor domain, and the first principal component was consistent with the response to the disturbance given to the ATPase pocket.  相似文献   

6.
Engineering the hydrophobic pocket of carbonic anhydrase II   总被引:3,自引:0,他引:3  
Wild-type and mutant human carbonic anhydrases II, where mutations have been made in the hydrophobic pocket of the active site, have been studied by X-ray crystallographic methods. Specifically, mutations at Val-143 (the base of the pocket) lead to significant changes in catalytic activity and protein structure. The obliteration of a well-defined pocket in the Val-143----Phe and Val-143----Tyr mutants results in significantly diminished enzyme activity [(5 x 10(4))-fold and (3 x 10(5))-fold, respectively]; however, the activity of the Val-143----His mutant is diminished less (10(2)-fold), and deepening the pocket in the Val-143----Gly mutant results in only a 2-fold decrease in activity [Fierke et al., 1991 (preceding paper in this issue)]. These results indicate that the hydrophobic pocket is important for substrate association with the enzyme, but there are probably several catalytically acceptable substrate trajectories through this region of the enzyme structure. Additionally, each mutant protein exhibits long-range (ca. 10-15 A) compensatory structural changes which accommodate the Val-143 substitution. As such, the genetic-structural approach represented in this work serves as a three-dimensional paradigm for the redesign of specificity pockets in other protein catalysts.  相似文献   

7.
Myosin ATPase activity was measured, by continuous luminometric method, in presence of different molecular weight heparins. ATPase activity decreases in the presence of heparin, when simultaneous incubation with ATP is carried out; the percentage of inhibition is proportional to polysaccharide concentration. Heparins of different molecular weights (1.75 KD to 11.6 KD) are competitive inhibitors of enzymatic activity; the inhibitory effects is also appreciable with trisulphated disaccharide. The possible mechanisms of interaction between heparin and myosin ATPase are discussed.  相似文献   

8.
It is known that ternary complexes of myosin subfragment 1 (S1) with ADP and the Pi analogs beryllium fluoride (BeFx) and aluminum fluoride (AlF4-) are stable analogs of the myosin ATPase intermediates M* x ATP and M** x ADP x Pi, respectively. Using kinetic approaches, we compared the rate of formation of the complexes S1 x ADP x BeFx and S1 x ADP x AlF4- in the absence and in the presence of F-actin, as well as of the interaction of these complexes with F-actin. We show that in the absence of F-actin the formation of S1 x ADP x BeFx occurs much faster (3-4 min) than that of S1 x ADP x AlF4- (hours). The formation of these complexes in the presence of F-actin led to dissociation of S1 from F-actin, this process being monitored by a decrease in light scattering. The light scattering decrease of the acto-S1 complex occurred much faster after addition of BeFx (during 1 min) than after addition of AlF4- (more than 20 min). In both cases the light scattering of the acto-S1 complex decreased by 40-50%, but it remained much higher than that of F-actin measured in the absence of S1. The interaction of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes with F-actin was studied by the stopped-flow technique with high time resolution (no more than 0.6 sec after mixing of S1 with F-actin). We found that the binding of S1 x ADP x BeFx or S1 x ADP x AlF4- to F-actin is accompanied by a fast increase in light scattering, but it does not affect the fluorescence of a pyrene label specifically attached to F-actin. We conclude from these data that within this time range a "weak" binding of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes to F-actin occurs without the subsequent transition of the "weak" binding state to the "strong" binding state. Comparison of the light scattering kinetic curves shows that S1 x ADP x AlF4- binds to F-actin faster than S1 x ADP x BeFx does: the second-order rate constants for the "weak" binding to F-actin are (62.8 +/- 1.8) x 10(6) M-1 x sec-1 in the case of S1 x ADP x AlF4- and (22.6 +/- 0.4) x 10(6) M-1 x sec-1 in the case of S1 x ADP x BeFx. We conclude that the stable ternary complexes S1 x ADP x BeFx and S1 x ADP x AlF4- can be successfully used for kinetic studies of the "weak" binding of the myosin heads to F-actin.  相似文献   

9.
10.
F. F  bi  n  A. Mü  hlrad 《BBA》1968,162(4):596-603
1. The enzymic and actin binding properties of myosins trinitrophenylated to different extents in the presence or absence of ATP have been studied.

2. The enzymic properties of myosin trinitrophenylated in the absence of ATP are different from those of myosin treated in the presence of ATP even on trinitrophenylating an equal number of lysyl residues. On trinitrophenylation in the absence of ATP the EDTA-(K+-)activated ATPase and Ca2+-activated ATPase decrease while the Mg2+-activated ATPase considerably increases. In the presence of ATP the enzymic properties of myosin are much less affected by trinitrophenylation.

3. The actin binding capacity of trinitrophenylated myosin does not change, although its enzymic properties may be greatly altered, and even if its property to be activated by actin is completely lost.  相似文献   


11.
To test the possibility that ATP diffusion limits the kinetics of myosin ATPase (EC. 3.6.1.3) in situ, myosin was covalently bound to the surface of 2 kinds of films: collagen and Immunodyne. On collagen films, it was bound either with 1-ethyl-3 (3 dimethyl-aminopropyl)carbodiimide (EDC) or with dimethyl-3,3'-dithiobis(propionimidate) (DTP). The apparent Km for K+-ATP rose from 0.26 mM for free myosin in solution to 2-5 mM for covalently bound myosin, and maximum K+-ATPase activity was very low. With the other film, Immunodyne from Pall, the maximum activity of bound myosin was 170 nmol per min per 1.5 cm2 film. The apparent Km for K+-ATP was 2.1 mM when the incubation mixture was vigorously stirred, and the effect of stirring indicated that the kinetics of K+-ATP hydrolysis are limited by external diffusion. The large amount of myosin bound per unit of Immunodyne film surface permitted the study of Mg2+-ATPase activity, although it was 400-500 times less than the K+-ATPase activity. The apparently non-Michaelian kinetics of Mg2+-ATP hydrolysis are attributable to the external diffusion. The apparent Michaelis constant observed at low Mg2+-ATP concentrations rose from 0.27 microM for myosin in solution to 5 microM for myosin bound to Immunodyne film.  相似文献   

12.
Measurements of the half-sarcomere stiffness during activation of skinned fibers from rabbit psoas (sarcomere length 2.5 μm, temperature 12°C) indicate that addition of 0.1 mM orthovanadate (Vi) to the solution produces a drop to ∼1/2 in number of force-generating myosin motors, proportional to the drop in steady isometric force (T0), an effect similar to that produced by the addition of 10 mM phosphate (Pi). However, in contrast to Pi, Vi does not change the rate of isometric force development. The depression of T0 in a series of activations in presence of Vi is consistent with an apparent second-order rate constant of ∼1 × 103 M−1 s−1. The rate constant of T0 recovery in a series of activations after removal of Vi is 3.5 × 10−2 s−1. These results, together with the finding in the literature that the ATPase rate is reduced by Vi in proportion to isometric force, are reproduced with a kinetic model of the acto-myosin cross-bridge cycle where binding of Vi to the force-generating actomyosin-ADP state induces detachment from actin to form a stable myosin-ADP-Vi complex that is not able to complete the hydrolysis cycle and reenters the cycle only via reattachment to actin upon activation in Vi-free solution.  相似文献   

13.
14.
It was shown that the highly purified monoaldehyde derivative of ADP obtained by partial reduction of the dialdehyde derivative of ADP causes strong irreversible inhibition of the Ca-ATPase activity of myosin subfragment I, the inhibiting effect being of the affinity modification type. The addition to the reaction medium of Mg2+ (but not Ca2+) during the subfragment I interaction with the inhibitor fully prevents the inhibiting effect at all substrates used (Ca-, Mg- or K, EDTA-ATPases). Contrariwise, the subfragment I modified in the absence of Mg2+ exhibits the same degree of inhibition for all the three types of the ATPase activity. An unexpected result that was previously unobserved for other affinity modifiers of myosin ATPase is the maintenance of activity in 50% of active centers, when "two-head" forms of the enzyme (the myosin proper and heavy meromyosin, HMM) are modified. Noteworthy that the affinity modification reaction is characterized by the same values of inhibition constants as in the case of myosin subfragment I (Ki = 3.3-3.5 X 10(-4) M; ki = 0.03-0.04 min-1). This finding provides additional evidence in favour of functional asymmetry of myosin heads in the myosin molecule which seems to be due to the screening of the active center of one head by the other one.  相似文献   

15.
We have used electron paramagnetic probes attached to the ribose of ATP (SL-ATP) to monitor conformational changes in the nucleotide pocket of myosin. Spectra for analogs bound to myosin in the absence of actin showed a high degree of immobilization, indicating a closed nucleotide pocket. In the Actin.Myosin.SL-AMPPNP, Actin.Myosin.SL-ADP.BeF(3), and Actin.Myosin.SL-ADP.AlF(4) complexes, which mimic weakly binding states near the beginning of the power stroke, the nucleotide pocket remained closed. The spectra of the strongly bound Actin.Myosin.SL-ADP complex consisted of two components, one similar to the closed pocket and one with increased probe mobility, indicating a more open pocket, The temperature dependence of the spectra showed that the two conformations of the nucleotide pocket were in equilibrium, with the open conformation more favorable at higher temperatures. These results, which show that opening of the pocket occurs only in the strongly bound states, appear reasonable, as this would tend to keep ADP bound until the end of the power stroke. This conclusion also suggests that force is initially generated by a myosin with a closed nucleotide pocket.  相似文献   

16.
Myosin light chain kinase was partially purified from bovine adrenal medulla. A polypeptide of Mr 165,000 dalton was identified as kinase by using anti-gizzard myosin light chain kinase IgG on immunoreplica. Phosphorylation of medullary myosin was Ca2+- and calmodulin-dependent. The phosphorylated myosin was showed to enhance the actin-activated Mg2+-ATPase activity. In contrast, the myosin ATPase activity was dramatically decreased by dephosphorylation of myosin.  相似文献   

17.
Conformational change accompanying modification of myosin ATPase   总被引:4,自引:0,他引:4  
  相似文献   

18.
The kinetic mechanism of myosin V is of great interest because recent evidence indicates that the two-headed myosin V molecule functions as a processive motor, i.e., myosin V is capable of moving along an actin filament for many catalytic cycles of the motor without dissociating. Three recent publications assessing the kinetics of single-headed myosin V provide different conclusions regarding the mechanism, particularly the rate-limiting step of the cycle. One study (, Proc. Natl. Acad. Sci. USA. 96:13726-13731) identifies ADP release as the rate-limiting step and provides a kinetic explanation for myosin V processivity. The others (, J. Biol. Chem. 274:27448-27456;, J. Biol. Chem. 275:4329-4335) do not identify the rate-limiting step but conclude that it is not ADP release. We show experimental and simulated data demonstrating that the inconsistencies in the reports may be due to difficulties in the measurement of the steady-state ATPase rate. Under standard assay conditions, ADP competes with ATP, resulting in product inhibition of the ATPase rate. This presents technical problems in analyzing and interpreting the kinetics of myosin V and likely of other members of the myosin family with high ADP affinities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号