首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus continues to be a major cause of infection in normal as well as immunocompromised hosts, and the increasing prevalence of highly virulent community-acquired methicillin-resistant strains is a public health concern. A highly expressed surface component of S. aureus, protein A (SpA), contributes to its success as a pathogen by both activating inflammation and by interfering with immune clearance. SpA is known to bind to IgG Fc, which impedes phagocytosis. SpA is also a potent activator of tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) signaling, inducing both chemokine expression and TNF-converting enzyme-dependent soluble TNFR1 (sTNFR1) shedding, which has anti-inflammatory consequences, particularly in the lung. Using a collection of glutathione S-transferase fusions to the intact IgG binding region of SpA and to each of the individual binding domains, we found that the SpA IgG binding domains also mediate binding to human airway cells. TNFR1-dependent CXCL8 production could be elicited by any one of the individual SpA IgG binding domains as efficiently as by either the entire SpA or the intact IgG binding region. SpA induction of sTNFR1 shedding required the entire IgG binding region and tolerated fewer substitutions in residues known to interact with IgG. Each of the repeated domains of the IgG binding domain can affect multiple immune responses independently, activating inflammation through TNFR1 and thwarting opsonization by trapping IgG Fc domains, while the intact IgG binding region can limit further signaling through sTNFR1 shedding.  相似文献   

2.
A cloned lymphoblast cell line, hRF-1, that secreted human monoclonal IgG4 rheumatoid factor autoantibody was produced by Epstein-Barr virus transformation of lymphocytes from rheumatoid arthritis synovium. The binding of hRF-1 rheumatoid factor to IgG globulins of different mammalian species was similar to the binding specificity of Staphylococcus aureus protein A (SpA) and to antibodies found in the sera from patients with rheumatoid arthritis. hRF-1 also had the same binding pattern to human IgG subclasses as SpA. Direct competition was observed between SpA and hRF-1 in binding IgG Fc. These results provide evidence for structural homology between a bacterial Fc receptor protein (SpA) and the monoclonal IgG rheumatoid factor.  相似文献   

3.
Soluble staphylococcal protein A (SpA) in the form of high m.w. complexes with IgG has been shown to significantly inhibit the growth of Meth A fibrosarcomas in BALB/c mice. Although SpA reportedly is a potent T cell mitogen that can induce immune cell proliferation and production of humoral factors with anti-tumor activity, it has been suggested that mitogenic enterotoxin contaminants might be responsible for these effects. The purpose of the present study was to investigate the nature of SpA-induced cell proliferation and the relationship between mitogenicity and the anti-tumor effect that we observed in our mouse model. SpA stimulated the proliferation of a mixed population of splenic B and T cells from BALB/c mice, but activity did not require the presence of IgG in the culture medium. Furthermore, mitogenic activity could be inhibited completely by anti-SEA plus anti-SEB, but was unaffected by anti-SpA. HPLC-purified SpA was inactive while the mitogenic factor(s) had the same retention time as authentic enterotoxin and its activity was inhibited by anti-SEA and anti-SEB, but not by anti-SpA. Enterotoxin-free rSpA produced in Escherichia coli had the same IgG binding capacity as the staphylococcal product but was not mitogenic. These data indicate that SEA and SEB completely account for mitogenicity in SpA preparations. In contrast, we found that optimal concentrations of rSpA as well as crude and HPLC purified staphylococcal SpA were equally effective in inhibiting the growth of established Meth A fibrosarcomas demonstrating that SpA is responsible for antitumor activity without any apparent role for enterotoxins.  相似文献   

4.
Filamentous bacteriophage display is a powerful and widely used technology for the selection of affinity ligands. However, the commonly used phagemid systems result in the production of a population of phage of which those displaying the ligand of interest represent only a small proportion. Through simple dilution and nonspecific binding effects, the presence of large numbers of ligand-free phage reduces the likelihood that weak binders will be successfully selected from a ligand library. To provide a means of avoiding such problems, we have introduced an affinity handle into the phage that permits the purification of ligand-displaying phage. The IgG binding domains ofStaphylococcus ciureus protein A (SpA) were fused to a ligand (single chain Fv[scFv]) which is displayed as a fusion with the phage surface protein ApIII. Phage-displaying SpA were separated by affinity chromatography using immobilized human IgG from non-displaying phage and the purified phage were shown to possess functional scFv. Comparisons of fusion proteins in which either the scFv or the affinity handle occupied the amino terminus of the fusion protein showed that, whereas SpA function was unaffected by position, scFv function was compromised when the scFv did not occupy the amino terminus.  相似文献   

5.
An expression system designed for cell surface display of hybrid proteins on Staphylococcus carnosus has been evaluated for the display of Staphylococcus aureus protein A (SpA) domains, normally binding to immunoglobulin G (IgG) Fc but here engineered by combinatorial protein chemistry to yield SpA domains, denoted affibodies, with new binding specificities. Such affibodies, with human IgA or IgE binding activity, have previously been selected from a phage library, based on an SpA domain. In this study, these affibodies have been genetically introduced in monomeric or dimeric forms into chimeric proteins expressed on the surface of S. carnosus by using translocation signals from a Staphylococcus hyicus lipase construct together with surface-anchoring regions of SpA. The recombinant surface proteins, containing the IgA- or IgE-specific affibodies, were demonstrated to be expressed as full-length proteins, localized and properly exposed at the cell surface of S. carnosus. Furthermore, these chimeric receptors were found to be functional, since recombinant S. carnosus cells were shown to have gained IgA and IgE binding capacity, respectively. In addition, a positive effect in terms of IgA and IgE reactivity was observed when dimeric versions of the affibodies were present. Potential applications for recombinant bacteria with redirected binding specificity in their surface proteins are discussed.  相似文献   

6.
The development of a microgravimetric immunobiosensor using a piezoelectric quartz crystal as a detector requires a stable and reproducible immobilization method for ligand binding. The method of silanization using 3-aminopropyltriethoxysilane (APTES) has been widely used for activating the carrier surface. In the present study, APTES deposition on a piezoelectric crystal surface was studied under various solvent conditions. A fluorescence method, using fluorescence isothiocyanate as a dye, was demonstrated for the quantification of amino groups on the silanized piezoelectric crystal surface. The optimum binding conditions of APTES deposition on a piezoelectric crystal surface were incorporated for the covalent immobilization of protein on the crystal surface in developing a stable and sensitive microgravimetric immunobiosensor. Determination of immunoglobulin G (IgG) concentration was performed using APTES modified piezoelectric crystals coated with protein G. The resonant frequency shift, resulting from the formation of protein G-IgG complex on the crystal surface, correlated with the concentration of IgG in the range 10 ng/ml to 0·1 mg/ml. The APTES modified, protein G coated crystals were found to be quite stable and did not show a significant loss of sensitivity even after 12 weeks of storage at 4°C in a desiccator.  相似文献   

7.
We studied the interaction of several nona-peptide mimotopes of different sequence and Staphylococcal protein A (SpA) with a recombinant human IgG1 antibody using isothermal titration calorimetry (ITC). The amino acid primary structure of the peptides was varied in order to identify the specific antibody-peptide binding sites. Additionally, the influence of temperature and salt concentration was investigated. An attempt was made to elucidate the structural changes upon complex formation using the determined thermodynamic parameters. The amino acid composition of the mimotopes determined their binding affinity. The binding constant K a of the mimotopes was in the range 1 × 104 to 1 × 106 M−1. The binding constant of SpA was on the average about three orders of magnitude higher than that of the peptides. The binding constant of the peptides and of SpA decreased with temperature and the binding process was connected with negative changes in enthalpy, entropy, and heat capacity. The binding of the mimotopes to the Fab part of the IgG1 antibody and binding of SpA to the Fc part of the IgG1 antibody were mainly driven by hydrophobic effects and associated with a relatively large change in water-accessible surface area. Determinants for a strong/reduced antibody-peptide binding were identified.  相似文献   

8.
Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.  相似文献   

9.
IgG-binding protein was genetically expressed and lipid-modified in a site-directed manner in Escherichia coli. The DNA sequence encoding the signal peptide and the nine N-terminal amino acid residues of the major lipoprotein of E. coli (lpp) was fused to the sequence of B-domain which was one of the IgG binding domains of Staphylococcal Protein A (SpA). The N-terminal cysteine residue of the resulting protein was enzymatically linked with lipids in the bacterial membrane. The lipid-modified protein was translocated at the bacterial membrane in a manner similar to native bacterial lipoprotein, and it was purified with IgG-Sepharose by affinity chromatography. The lipid modified proteins (lppB1 and lppB5) showed a similar IgG binding activity to unmodified proteins, which was estimated by competitive ELISA. Proteoliposomes of lipid modified proteins were prepared in an elegant fashion so that the IgG binding site should be properly oriented on the surface of an individual liposome by anchoring the lipid-tail into the hydrophobic layer of the liposome membrane. As compared with the unmodified one, the lipid modified protein incorporated into the proteoliposome exhibited higher IgG binding activity.  相似文献   

10.
A quartz crystal microbalance (QCM) biosensor integrated into a flow injection analysis (FIA) system was used for the real-time investigation of molecular recognition between a protein and small molecular medicinal agents. Two sulfa-drugs, sulfamethazine (SMZ) and sulfamethoxazole (SMO), were, respectively, immobilized on the gold electrodes of the piezoelectric crystals using appropriate procedures based on self-assembly of the dithiothreitol (DTT). The binding interactions of the two immobilized drug ligands, with various proteins in solution, were followed as changes in the resonant frequency of the modified crystals. Results obtained from this rapid screen analysis clearly indicated that the two drug ligands appeared quite different in this molecular recognition procedure although their structures were similar. SMZ-immobilized sensor showed specific interaction only with IgG, while SMO-immobilized sensor showed negligible specific binding with IgG, but binding with trypsin and chymotrypsin. Further studies on the specific interaction between immobilized SMZ and three different species of IgG--human IgG, goat IgG and mouse IgG were carried out and the marked species-dependent difference was observed. The resultant sensorgrams were rapidly analyzed by using an in-house kinetic analysis software based on genetic algorithm (GA) to derive both the kinetic rate constants (kass and kdiss) and equilibrium association constants (KA) for IgG-SMZ interactions. For the interactions, KA were 5.48 x 10(5), 2.75 x 10(5) and 1.86 x 10(5) M(-1) for human IgG, goat IgG and mouse IgG, respectively. The kinetic data provided further insight into the structural/functional relationships of different IgG on a molecular level.  相似文献   

11.
We demonstrate a label-free peptide-coated carbon nanotube-based immunosensor for the direct assay of human serum. A rheumatoid arthritis (RA)-specific (cyclic citrulline-containing) peptide, was immobilized to functionalized single-walled carbon nanotubes deposited on a quartz crystal microbalance (QCM) sensing crystal. Serum from RA patients was used to probe these nanotube-based sensors, and antibody binding was detected by QCM sensing. Specific antibody binding was also determined by comparing the assay of two serum control groups (normal and diseased sera), and the native unmodified peptide. The sensitivity of the nanotube-based sensor (detection in the femtomol range) was higher than that of the established ELISA and recently described microarray assay systems, detecting 34.4 and 37.5% more RA patients with anti-citrullinated peptide antibodies than those found by ELISA and microarray, respectively. There was also an 18.4 and 19.6% greater chance of a negative test being a true indicator of a person not having RA than by either ELISA or microarray, respectively. The performance of our label-free biosensor enables its application in the direct assay of sera in research and diagnostics.  相似文献   

12.
Using long-period gratings (LPG) inscribed in photonic crystal fiber (PCF) and coupling this structure with an optically aligned flow cell, we have developed an optofluidic refractive index transduction platform for label-free biosensing. The LPG-PCF scheme possesses extremely high sensitivity to the change in refractive index induced by localized binding event in different solution media. A model immunoassay experiment was carried out inside the air channels of PCF by a series of surface modification steps in sequence that include adsorption of poly(allylamine hydrochloride) monolayer, immobilization of anti-rat bone sialoprotein monoclonal primary antibody, and binding interactions with non-specific goat anti-rabbit IgG (H+L) and specific secondary goat anti-mouse IgG (H+L) antibodies. These adsorption and binding events were monitored in situ using the LPG-PCF by measuring the shift of the core-to-cladding mode coupling resonance wavelength. Steady and significant resonance changes, about 0.75 nm per nanometer-thick adsorbed/bound bio-molecules, have been observed following the sequence of the surface events with monolayer sensitivity, suggesting the promising potential of LPG-PCF for biological sensing and evaluation.  相似文献   

13.
West AP  Bjorkman PJ 《Biochemistry》2000,39(32):9698-9708
The neonatal Fc receptor (FcRn) performs two distinct but related functions: transport of maternal immunoglobulin G (IgG) to pre- or neonatal mammals, thus providing passive immunity, and protection of IgG from normal serum protein catabolism. FcRn is related to class I MHC proteins but lacks a functional peptide binding groove. The crystal structure of human FcRn has been determined at 2.7 A resolution and compared to the previously described structure of rat FcRn [Burmeister et al. (1994) Nature 372, 336-343] and to the structures of MHC and MHC-related proteins. Human FcRn is structurally similar to the rat receptor but does not form receptor dimers in the crystals as observed in crystals of rat FcRn. The interaction between human FcRn and IgG was characterized by determining the binding stoichiometry using equilibrium gel filtration and by deriving binding affinities for the different human IgG subclasses using a surface plasmon resonance assay. Like rat and mouse FcRn, human FcRn interacts with IgG with a 2:1 receptor:ligand stoichiometry. The binding of human FcRn to the four human IgG subclasses shows subclass and allotype variations but no clear subclass affinity differences that correlate with serum half-lives. The structure of human FcRn and studies of its ligand binding are relevant to current efforts to use FcRn-mediated regulation of IgG half-life in serum to increase the lifetimes of antibody-based therapeutics.  相似文献   

14.
An expression system designed for cell surface display of hybrid proteins on Staphylococcus carnosus has been evaluated for the display of Staphylococcus aureus protein A (SpA) domains, normally binding to immunoglobulin G (IgG) Fc but here engineered by combinatorial protein chemistry to yield SpA domains, denoted affibodies, with new binding specificities. Such affibodies, with human IgA or IgE binding activity, have previously been selected from a phage library, based on an SpA domain. In this study, these affibodies have been genetically introduced in monomeric or dimeric forms into chimeric proteins expressed on the surface of S. carnosus by using translocation signals from a Staphylococcus hyicus lipase construct together with surface-anchoring regions of SpA. The recombinant surface proteins, containing the IgA- or IgE-specific affibodies, were demonstrated to be expressed as full-length proteins, localized and properly exposed at the cell surface of S. carnosus. Furthermore, these chimeric receptors were found to be functional, since recombinant S. carnosus cells were shown to have gained IgA and IgE binding capacity, respectively. In addition, a positive effect in terms of IgA and IgE reactivity was observed when dimeric versions of the affibodies were present. Potential applications for recombinant bacteria with redirected binding specificity in their surface proteins are discussed.  相似文献   

15.
Staphylococcus aureus is an important human pathogen that causes infections that may present high morbidity and mortality. Among its many virulence factors protein A (SpA) and Staphylococcal binding immunoglobulin protein (Sbi) bind the Fc portion of IgG interfering with opsonophagocytosis. We have previously demonstrated that SpA interacts with the TNF-α receptor (TNFR) 1 through each of the five IgG binding domains and induces the production of pro-inflammatory cytokines and chemokines. The IgG binding domains of Sbi are homologous to those of SpA, which allow us to hypothesize that Sbi might also have a role in the inflammatory response induced by S. aureus. We demonstrate that Sbi is a novel factor that participates in the induction of the inflammatory response during staphylococcal infections via TNFR1 and EGFR mediated signaling as well as downstream MAPKs. The expression of Sbi significantly contributed to IL-6 production and modulated CXCL-1 expression as well as neutrophil recruitment to the site of infection, thus demonstrating for the first time its relevance as a pro-inflammatory staphylococcal antigen in an in vivo model.  相似文献   

16.
金黄色葡萄球菌蛋白A(Staphylococcal protein A,SpA)和链球菌蛋白G(Streptococcal protein G,SpG)是细菌产生的特异结合宿主抗体的细菌免疫球蛋白结合蛋白(Immunoglobulin(Ig)-binding proteins,IBPs)的代表分子。SpA和SpG均包含由多个序列高度同源的结合结构域重复组成的抗体结合区,各单结构域都具有完全的结合IgG的功能。为研究这些单结构域随机组合能否产生具有新结合特性的组合分子,将SpA的A、B、C、D、E以及SpG的B2、B3共7个单结合结构域随机组合构建成噬菌体展示文库后,应用人IgG1、2、3、4为诱饵分子对该文库进行4轮筛选,获得了SpA天然分子中不存在的单结构域排列组合分子D-C。在筛选过程中,阴性对照噬菌体的逐渐减少、展示两个结构域以上的噬菌体比例不断增多,尤其是D-C组合的选择性富集和其随机连接肽的严格筛选都显示了筛选的有效性和D-C组合的重要性。噬菌体ELISA进一步证实D-C与人IgG四亚类的结合能力远强于天然SpA分子。该研究应用分子进化技术首次获得了一种与人IgG四亚类具有结合优势的新型组合分子D-C,不仅可为IgG纯化、制备、检测等方面的应用提供新的候选分子,还为细菌IBP结构功能的进一步研究提供新的手段。  相似文献   

17.
The Staphylococcal protein A (SpA) binding protein was detected on the surface of annelid coelomocytes. The flow cytometric analysis revealed that 50% coelomocytes of Lumbricus terrestris react with SpA, a figure six times higher than the number of positive coelomocytes found in Eisenia foetida.  相似文献   

18.
Spondyloarthritis (SpA) comprises a heterogeneous group of inflammatory diseases, with strong association to human leukocyte antigen (HLA)-B27. A triggering bacterial infection has been considered as the cause of SpA, and bacterial heat shock protein (HSP) seems to be a strong T cell antigen. Since bacterial and human HSP60, also named HSPD1, are highly homologous, cross-reactivity has been suggested in disease initiation. In this study, levels of antibodies against bacterial and human HSP60 were analysed in SpA patients and healthy controls, and the association between such antibodies and disease severity in relation to HLA-B27 was evaluated.Serum samples from 82 patients and 50 controls were analysed by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G1, IgG2, IgG3 and IgG4 antibodies against human HSP60 and HSP60 from Chlamydia trachomatis, Salmonella enteritidis and Campylobacter jejuni. Disease severity was assessed by the clinical scorings Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI).Levels of IgG1 and IgG3 antibodies against human HSP60, but not antibodies against bacterial HSP60, were elevated in the SpA group compared with the control group. Association between IgG3 antibodies against human HSP60 and BASMI was shown in HLA-B27+ patients. Only weak correlation between antibodies against bacterial and human HSP60 was seen, and there was no indication of cross-reaction.These results suggest that antibodies against human HSP60 is associated with SpA, however, the theory that antibodies against human HSP60 is a specific part of the aetiology, through cross-reaction to bacterial HSP60, cannot be supported by results from this study. We suggest that the association between elevated levels of antibodies against human HSP60 and disease may reflect a general activation of the immune system and an increased expression of human HSP60 in the synovium of patients with SpA.  相似文献   

19.

Introduction

Spondyloarthritis (SpA), an interrelated group of rheumatic diseases, has been suggested to be triggered by bacterial infections prior to the development of an autoimmune response that causes inflammation of the spinal and peripheral joints. Because human heat shock protein 60 (HSP60), recently renamed HSPD1, and bacterial HSP60 are highly homologous, immunological cross-reactivity has been proposed as a mechanism of disease initiation. However, previous investigations of the humoral immune response to HSP60 in SpA patients have lacked determination of immunoglobulin G (IgG) subclasses and patient follow-up. In this study, we have focused on these parameters in a cohort of axial SpA patients with a well-established set of clinical characteristics, including MRI changes and human leukocyte antigen B27.

Methods

IgG subclass antibodies (IgG1, IgG2, IgG3 and IgG4) against recombinant HSP60 of three reactive arthritis-related bacteria; human HSP60; and the microorganisms Chlamydia trachomatis and C. pneumoniae were determined by ELISA. Serum samples collected from 2004 to 2006 and in 2010 and 2011 from 39 axial SpA patients were analyzed and compared with samples from 39 healthy controls. The Mann-Whitney U test and Wilcoxon matched pairs test were used to compare the antibody levels in different and paired groups, respectively. P < 0.01 was considered significant. The Spearman nonparametric correlation was used to determine correlation between antibody levels and between antibody levels and the disease parameters.

Results

Elevated levels of IgG1 and IgG3 to human HSP60 and IgG1 to HSP60 of Salmonella enterica Enteritidis were observed in SpA patients compared with healthy controls at both time points. The antibody levels were almost constant over time for IgG1, whereas high levels of IgG3 to human HSP60 tended to decrease over time. The antibody response to human HSP60 was predominantly of the IgG3 subclass, and patients with high levels of IgG3 to this antigen had low levels of IgG1, indicating an inverse association. Different IgG subclasses were produced against bacterial and human HSP60 in the same serum sample, IgG1 and IgG3, respectively, indicating that there was no cross-reaction.

Conclusions

A significant association was observed between axial SpA and the presence of IgG1/IgG3 antibodies to human HSP60 and of IgG1 to S. enterica Enteritidis and C. trachomatis. Generation of antibodies to human HSP60 was independent of the presence of antibodies to bacterial HSP60. No association was observed between clinical and MRI changes with antibodies over time. Altogether, such antibodies do not reflect the disease activity in these patients.This study has been approved by the Regional Research Ethics Committee of Central Jutland, Denmark. Trial registration numbers: 20050046 and 20100083  相似文献   

20.
A composite self-excited PZT-glass cantilever (4mm in length and 2mm wide) was fabricated and used to measure the binding and unbinding of model proteins. A key feature of the cantilever is that its resonant frequency is dependent on its mass. The fabricated cantilever has mass change sensitivity in liquid of 7.2 x 10(-11)g/Hz. Resonant frequency change was measured as protein reacted or bound with the sensing glass cantilever surface. Protein concentrations, 0.1 and 1.0mg/mL, which resulted in nanogram mass change were successfully detected. The mass change sensitivity gave a total mass change of 54+/-0.45 ng for the binding of anti-rabbit IgG (biotin conjugated) to rabbit IgG immobilized cantilever and the subsequent binding of captavidin. The unbinding of anti-rabbit IgG and captavidin gave a total mass change of 54+/-1.70 ng. Fluorescence based assays showed the combined mass of both proteins in the released samples was 54+/-2.24 ng. The binding kinetics of the model proteins is modeled as first order. The initial binding rate constant of anti-rabbit IgG to rabbit IgG was 1.36+/-0.02(min(mg/mL))(-1). The initial binding rate constant of captavidin to biotinylated anti-rabbit IgG was (2.57 x 10(-1))+/-0.003(min(mg/mL))(-1). The significance of the results we report here is that millimeter-sized PZT-actuated glass cantilevers have the sensitivity to measure in real-time protein-protein binding, and the binding rate constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号