首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The influence of dibunol, phenazepam used alone and combined on rat conflict behavior and rat blood and brain malonic dialdehyde content was studied. It was shown that dibunol exerts an unmarked anticonflict action that can be removed by bicuculline. Combined administration of dibunol and phenazepam potentiates appreciably the anticonflict effect. This permits reducing the doses of the drugs. The anxiolytic effect of dibunol alone and combined with phenazepam is attended by a decrease in the content of malonic dialdehyde in rat blood and brain, evidence of the reduction of the lipid peroxidation intensity.  相似文献   

2.
The elevation of cardiomyocyte membrane permeability has been demonstrated during pituitrin-isadrin-induced myocardial ischemia. Preventive 7-day oral administration of an antioxidant dibunol (30 and 120 mg/kg) preserved sarcolemmal integrity, decreased myocardial membrane permeability to sulfacetamide sodium, and reduced peroxide and mechanical erythrocyte hemolysis. Inhibition of lipid peroxidation with an antioxidant dibunol improved myocardial injury and decreased the death rate of animals with catecholamine-induced myocardial ischemia. These data suggest the involvement of lipid peroxidation in the development of ischemic myocardial injury.  相似文献   

3.
It has been shown that the preliminary administration of a synthetic antioxidant ionol (dibunol, BHT) prevented to a considerable extent the increase in the concentration of corticosterone in the adrenal glands and blood plasma induced by ACTH administration or emotional-painful stress.  相似文献   

4.
A major goal in the treatment of acute ischemia of a vascular territory is to restore blood flow to normal values, i.e. to "reperfuse" the ischemic vascular bed. However, reperfusion of ischemic tissues is associated with local and systemic leukocyte activation and trafficking, endothelial barrier dysfunction in postcapillary venules, enhanced production of inflammatory mediators and great lethality. This phenomenon has been referred to as "reperfusion injury" and several studies demonstrated that injury is dependent on neutrophil recruitment. Furthermore, ischemia and reperfusion injury is associated with the coordinated activation of a series of cytokines and adhesion molecules. Among the mediators of the inflammatory cascade released, TNF-alpha appears to play an essential role for the reperfusion-associated injury. On the other hand, the release of IL-10 modulates pro-inflammatory cytokine production and reperfusion-associated tissue injury. IL-1beta, PAF and bradykinin are mediators involved in ischemia and reperfusion injury by regulating the balance between TNF-alpha and IL-10 production. Strategies that enhance IL-10 and/or prevent TNF-alpha concentration may be useful as therapeutic adjuvants in the treatment of the tissue injury that follows ischemia and reperfusion.  相似文献   

5.
OBJECTIVE--To compare the efficacy and tolerability of hydrochlorothiazide, sustained release verapamil, and their combination in patients with mild to moderate hypertension. DESIGN--Randomised multicentre trial of 48 weeks'' duration with a double blind comparison of hydrochlorothiazide and verapamil followed by an open trial of combined treatment for patients not achieving the target diastolic blood pressure (less than 90 mm Hg) during treatment with a single drug. SETTING--Outpatient departments in 10 clinics and 10 private practices of general practitioners or internists. PATIENTS--369 Hypertensive patients with a diastolic blood pressure of 95-120 mm Hg during a placebo run in period of two weeks. INTERVENTIONS--Initial treatment consisted of 12.5 mg hydrochlorothiazide (n = 187) or 120 mg sustained release verapamil (n = 182) once daily (regimen I). If the target diastolic blood pressure of less than 90 mm Hg was not achieved within four weeks doses were increased to 25 mg hydrochlorothiazide or 240 mg verapamil once (regimen II) and twice daily (regimen III). Patients not achieving target blood pressure were given the combination of hydrochlorothiazide and verapamil--that is, 25 and 240 mg once (regimen IV) and twice daily (regimen V). MAIN OUTCOME MEASURE--Blood pressure determined with a device permitting automatic repeated measurements with printouts. RESULTS--After eight weeks of treatment with a single drug 76 out of 178 (43%) and 101 out of 175 (58%) patients achieved the target blood pressure with hydrochlorothiazide and verapamil, respectively. During follow up until 48 weeks patients treated with verapamil reached the target blood pressure more often and at lower doses and were less likely to switch to combination treatment than patients randomised to hydrochlorothiazide treatment. Adding verapamil to hydrochlorothiazide was more effective than the addition of hydrochlorothiazide to verapamil. At the end of the study 42 out of 169 (25%) and 73 out of 163 (45%) patients initially randomised to hydrochlorothiazide and verapamil, respectively, were at target blood pressure without combination treatment. After adding verapamil to hydrochlorothiazide or hydrochlorothiazide to verapamil an additional 58 (34%) and 29 (18%) patients reached the target blood pressure, respectively. Altogether 92 out of 332 (28%) patients failed to achieve target blood pressure with regimen V. There were four, 10, seven, and seven withdrawals due to possible adverse effects to treatment with hydrochlorothiazide, verapamil, combining verapamil with hydrochlorothiazide, and combining hydrochlorothiazide with verapamil, respectively. CONCLUSIONS--In doses currently used in antihypertensive treatment verapamil was more effective than hydrochlorothiazide as a single agent and in combination in mild to moderate hypertension, whereas withdrawal rates caused by side effects possibly related to treatment were similar.  相似文献   

6.
Brain ischemia is associated with an acute release of pro-inflammatory cytokines, notably TNF-alpha and IL-6 and failure of the blood-brain barrier. Shear stress, hypoxia-hypoglycemia, and blood leukocytes play a significant role in blood-brain barrier failure during transient or permanent ischemia. However, these mechanisms have not been studied as independent variables for in vitro ischemia. The present study, using a dynamic in vitro blood-brain barrier model, showed that flow cessation/reperfusion under normoxia-normoglycemia or hypoxia-hypoglycemia without blood leukocytes in the luminal perfusate had a modest, transient effect on cytokine release and blood-brain barrier permeability. By contrast, exposure to normoxic-normoglycemic flow cessation/reperfusion with blood leukocytes in the luminal perfusate led to a significant increase in TNF-alpha and IL-6, accompanied by biphasic blood-brain barrier opening. Enhanced permeability was partially prevented with an anti-TNF-alpha antibody. In leukocyte-free cartridges, the same levels of IL-6 had no effect, while TNF-alpha caused a moderate increase in blood-brain barrier permeability, suggesting that blood leukocytes are the prerequisite for cytokine release and blood-brain barrier failure during reduction or cessation of flow. These cells induce release of TNF-alpha early after ischemia/reperfusion; TNF-alpha triggers release of IL-6, since blockade of TNF-alpha prevents IL-6 release, whereas blockade of IL-6 induces TNF-alpha release. Pre-treatment of blood leukocytes with the cyclooxygenase (COX) inhibitor, ibuprofen, inhibited cytokine release and completely preserved blood-brain barrier permeability during the reperfusion period. In conclusion, loss of flow (flow cessation/reperfusion) independent of hypoxia-hypoglycemia plays a significant role in blood-brain barrier failure by stimulating leukocyte-mediated inflammatory mechanisms.  相似文献   

7.
Rats were pretreated with a single iv dose of chlorpromazine (CPZ) 3 mg/kg, verapamil 1 mg/kg, or quinacrine 2 mg/kg. Livers were taken out and perfused with University of Wisconsin (UW) preservation solution and stored on ice for 48 h in the UW solution before reperfusion with erythrocyte-free and colloid-free Krebs-Hanseleit buffer at 38 degrees C in a nonrecirculating perfusion system for 2 h. CPZ- and quinacrine-pretreated livers produced significantly more bile than control livers and also released significantly less alanine aminotransferase into the perfusate at 30, 60, and 120 min of reperfusion. Aspartate aminotransferase levels were lower at 30 and 60 min of reperfusion for CPZ-pretreated livers but not at 120 min. The only difference between groups concerning lactate dehydrogenase (LDH) release into the perfusate was that CPZ decreased the amount of LDH released at 60 min. Total tissue water or tissue electrolyte content of the liver tissue at the end of the reperfusion did not differ between groups. In conclusion, verapamil was ineffective when given as single dose iv pretreatment to the liver donor but pretreatment with CPZ or quinacrine appeared to improve the function of the preserved liver.  相似文献   

8.
Reflectance spectroscopy was utilized to monitor the oxidation states of myoglobin (Mb) in isolated, buffer-perfused rat hearts. Hearts were subjected to 30 min global, no-flow ischemia, followed by reperfusion under anoxic conditions. The addition of Na2S to the buffer at reperfusion permitted the detection of ferryl myoglobin (MbIV) as its sulfmyoglobin derivative. The accumulation of MbIV was prevented by addition of ascorbic acid (1 mM), ergothioneine (2mM), or desferal (1mM) to the buffer prior to ischemia. Ascorbate and other agents have been previously shown to serve as one-electron reductants of MbIV. We propose that during the early phases of ischemia, deoxymyoglobin is oxidized to MbIV by residual H2O2. It also seems reasonable that the peroxidative activity of Mb(IV), during oxygenated reperfusion, might lead to cellular damage if this hypervalent form of Mb is not reduced.  相似文献   

9.
Thyroliberin (TRH), dibutyryl cyclic AMP (db-cAMP), and 3-isobutyl-l-methylxanthine (MIX) had a stimulatory effect on prolactin (PRL) and growth hormone (GH) release from GH 3 cells. Half-maximal and maximal effects were observed for TRH at 2.5 nM and 10 nM; for db-cAMP at 0.6 mM and 5 mM, respectively. MIX (0.1 mM–1 mM) induced a dose-dependent accumulation of cellular cyclic AMP, while the hormone release was already maximally stimulated at 0.1 mM MIX. The maximal effects on hormone release of TRH and db-cAMP, but not of TRH and MIX, were additive.The Ca2+ channel blockers Co2+ (5 mM) and verapamil (100 M) and the Ca2+ chelator EGTA (4 mM) abolished the stimulatory effect of TRH (1 M) on hormone release. Co2+ and verapamil, but not EGTA, inhibited the stimulatory effect of db-cAMP (5 mM) on hormone release. The inhibitory effects of Co2+ and verapamil on GH release were counteracted by the combination of TRH and db-cAMP. For PRL release Co2+, but not verapamil, was able to inhibit the combined action of TRH and db-cAMP. Co2+, verapamil, and EGTA eliminated the stimulatory effect of MIX (1 mM) on PRL release while only Co2+ and EGTA affected the GH release. Hormone release in the presence of MIX plus verapamil or EGTA, but not Co2+, was increased by TRH.The calmodulin antagonist trifluoperazine (TFP) at 30 M inhibited basal hormone release and hormone release stimulated by TRH (1 M), db-cAMP (5 mM), and MIX (1 mM). The Ca2+ ionophore A23187 (5 M) had a stimulatory effect on basal hormone release which was abolished by 30 M TFP.  相似文献   

10.
Elevated plasma and tissue endothelin (ET)-1 levels in patients with critical limb ischemia (CLI) has been described. Here the effect of a period of acute ischemia and subsequent reperfusion on plasma ET-1 and tissue ET-1/ET receptors in skeletal muscle biopsies from CLI patients undergoing femoro-distal bypass surgery was studied. Peripheral and "local" blood and muscle biopsies were obtained from patients undergoing femoro-distal bypass surgery, at the start of the procedure (control), after a period of vascular clamping (ischemia), and after clamp release (reperfusion). Plasma ET-1 was determined by enzyme-linked immunosorbent assay. Tissue ET-1 was assessed by counting ET-1 immunostaining cells per unit area, and ET(A)/ET(B) receptors were identified on sections by in vitro autoradiography in which binding was quantitatively assessed by densitometry. There was no significant effect of ischemia or reperfusion on plasma ET-1 levels or on ET(A)/ET(B) receptor binding. However, tissue ET-1 increased during both acute ischemia and reperfusion (P < 0.05). A high proportion of positive ET-1 immunostaining was associated with microvessels and also exhibited a similar distribution to macrophages. Previously, it has been shown that both plasma ET-1 and tissue ET-1/ET receptors are increased in CLI patients compared with atherosclerotic controls. Also, increased muscle ET-1 levels have been described in acute ischemia caused by tourniquet application in nonischemic patients undergoing total knee replacement. In CLI patients, in whom ET-1 is already upregulated, this further increase may exacerbate existing pathologic processes and contribute to ischemia-reperfusion injury. ET-1 antagonists may therefore be useful adjuncts in CLI and other surgical procedures in which ischemia-reperfusion damage occurs.  相似文献   

11.
Many cardiac interventional procedures, such as coronary angioplasty, stenting, and thrombolysis, attempt to reintroduce blood flow (reperfusion) to an ischemic region of myocardium. However, the reperfusion is accompanied by a complex cascade of cellular and molecular events resulting in oxidative damage, termed myocardial ischemia-reperfusion (I/R) injury. In this study, we evaluated the ability of HO-4038, an N-hydroxypiperidine derivative of verapamil, on the modulation of myocardial tissue oxygenation (Po(2)), I/R injury, and key signaling molecules involved in cardioprotection in an in vivo rat model of acute myocardial infarction (MI). MI was created in rats by ligating the left anterior descending coronary artery (LAD) for 30 min followed by 24 h of reperfusion. Verapamil or HO-4038 was infused through the jugular vein 10 min before the induction of ischemia. Myocardial Po(2) and the free-radical scavenging ability of HO-4038 were measured using electron paramagnetic resonance spectroscopy. HO-4038 showed a significantly better scavenging ability of reactive oxygen radicals compared with verapamil. The cardiac contractile functions in the I/R hearts were significantly higher recovery in HO-4038 compared with the verapamil group. A significant decrease in the plasma levels of creatine kinase and lactate dehydrogenase was observed in the HO-4038 group compared with the verapamil or untreated I/R groups. The left ventricular infarct size was significantly less in the HO-4038 (23 +/- 2%) compared with the untreated I/R (36 +/- 4%) group. HO-4038 significantly attenuated the hyperoxygenation (36 +/- 1 mmHg) during reperfusion compared with the untreated I/R group (44 +/- 2 mmHg). The HO-4038-treated group also markedly attenuated superoxide production, increased nitric oxide generation, and enhanced Akt and Bcl-2 levels in the reperfused myocardium. Overall, the results demonstrated that HO-4038 significantly protected hearts against I/R-induced cardiac dysfunction and damage through the combined beneficial actions of calcium-channel blocking, antioxidant, and prosurvival signaling activities.  相似文献   

12.
Post-ischemic reperfusion causes cardiac dysfunction and radical-induced lipid peroxidation (LPO) detectable by ESR spin trapping. This study deals with the applicability of the spin trap technique to pharmacological investigations during myocardial reperfusion injury. The use of the spin trap phenylbutylnitrone (PBN, 3 mM) in isolated rat hearts demonstrated the release of alkoxyl radicals (aN = 1.39 mT, aH = 0.19 mT) formed particularly within the first 15 min of reperfusion following 30 min of ischemia. The decline of radicals, after 10 min of reperfusion, was accompanied by recovery of function in 80% of the hearts. The radical concentration in the coronary effluent (maximum after 7.5 min) was reduced by the infusion of 1 mM mercaptopropionylglycine (MPG, 2.7 ± 0.5 U/ml, p < 0.001) or 5 M vitamin E (11.7 ± 0.8 U/ml, p < 0.001), compared to the (PBN-containing) control (29.7 ± 4.3 U/ml). Moreover, functional recovery (left ventricular developed pressure, LVDP 91.6 ± 20% of pre-ischemic level, p < 0.05) was improved by the hydrophilic radical scavenger MPG, compared to the (PBN-containing) control (LVDP 50.5 ± 15.7% of baseline). PBN alone led to higher functional recovery (p < 0.05) and reduced VF (duration of ventricular fibrillation; 7.10 ± 0.36 min/30 min, p < 0.05), compared to the untreated (PBN-free) control (LVDP 26.6 ± 11.8%; VF 19.42 ± 3.64 min/30 min). The Ca antagonist verapamil (0.1 M), MPG, and the lipophilic vitamin E showed cardioprotection in the absence of PBN: post-ischemic recovery of LVDP was 25.4 ± 6.8% (p < 0.05), 39.6 ± 12.7% (p < 0.05) and 52.4 ± 2.6% (p < 0.01), respectively, compared to the corresponding untreated control (13.3 ± 6.6%). Whereas verapamil and vitamin E were able to protect the heart when present alone, they offered no additive effect in the presence of PBN. Therefore, PBN can be used to estimate the radical scavenger properties of an agent in the heart. However, because of the protective properties of PBN itself, the results of simultaneous investigations of the effects of other compounds, such as Ca antagonists or lipophilic radical scavengers, on heart function may be limited.  相似文献   

13.

Background

Blood brain barrier (BBB) dysfunction is a common facet of cerebral ischemia, and the alteration of drug transporter, P-glycoprotein (P-gp), has been documented.

Aims

This study explores influence of damaged BBB and elevated P-gp on cerebral verapamil penetration after ischemia both in vivo and in vitro.

Methods

Middle cerebral artery occlusion (MCAO) induced ischemia/reperfusion (I/R) of rats, and Na2S2O4 induced hypoxia/reoxygenation (H/R) damage of rat brain mirovessel endothelial cells (RBMECs) respectively, served as BBB breakdown model in vivo and in vitro. Evans-Blue (EB) extravagation and 125I-albumin were used to quantify BBB dysfunction; UPLC–MS/MS analytical method was performed to determine accurately the concentration of verapamil in brain tissue and cell. Flow cytometry, immunohistochemistry and western blotting were applied to evaluate transport function and protein expression of P-gp.

Results

Overexpressed ICAM-1 and MMP-9 mediated BBB dysfunction after ischemia, which induced EB leakage and 125I-albumin uptake increase. Enhanced accumulation of verapamil in brain tissue, but intracellular concentration reduced evidently after H/R injury. Transcellular transportation of verapamil elevated when P-gp function or expression was inhibited after H/R injury.

Conclusion

These data indicated that BBB penetration of verapamil under ischemia condition was not only depending on BBB breakdown, but also regulated by P-gp.  相似文献   

14.
It is stated that prophylactic administration of ional (dibunol) and taurine to rats exerts an antihypoxic effect in case of acute hemic hypoxia. It is expressed in a decrease of methemoglobin level in blood, increase of pO2, in the skeletal muscles, normalization of the structure of hematoparenchymatous barriers, prevention or decrease in a fall of the rate of oxygen consumption by tissues.  相似文献   

15.
Du J  Huang X  Sun S  Wang C  Lebioda L  Dawson JH 《Biochemistry》2011,50(38):8172-8180
Dehaloperoxidase (DHP), discovered in the marine terebellid polychaete Amphitrite ornata, is the first heme-containing globin with a peroxidase activity. The sequence and crystal structure of DHP argue that it evolved from an ancient O(2) transport and storage globin. Thus, DHP retains an oxygen carrier function but also has the ability to degrade halophenol toxicants in its living environment. Sperm whale myoglobin (Mb) in the ferric state has a peroxidase activity ~10 times lower than that of DHP. The catalytic activity enhancement observed in DHP appears to have been generated mainly by subtle changes in the positions of the proximal and distal histidine residues that appeared during DHP evolution. Herein, we report investigations into the mechanism of action of DHP derived from examination of "peroxidase-like" Mb mutants and "Mb-like" DHP mutants. The dehalogenation ability of wild-type Mb is augmented in the peroxidase-like Mb mutants (F43H/H64L, G65T, and G65I Mb) but attenuated in the Mb-like T56G DHP variant. X-ray crystallographic data show that the distal His residues in G65T Mb and G65I are positioned ~0.3 and ~0.8 ?, respectively, farther from the heme iron compared to that in the wild-type protein. The H93K/T95H double mutant Mb with the proximal His shifted to the "DHP-like" position has an increased peroxidase activity. In addition, a better dehaloperoxidase (M86E DHP) was generated by introducing a negative charge near His89 to enhance the imidazolate character of the proximal His. Finally, only minimal differences in dehalogenation activities are seen among the exogenous ligand-free DHP, the acetate-bound DHP, and the distal site blocker L100F DHP mutant. Thus, we conclude that binding of halophenols in the internal binding site (i.e., distal cavity) is not essential for catalysis. This work provides a foundation for a new structure-function paradigm for peroxidases and for the molecular evolution of the dual-function enzyme DHP.  相似文献   

16.
X C Yu  S Wu  G Y Wang  J Shan  T M Wong  C F Chen  K T Pang 《Life sciences》2001,68(25):2863-2872
The primary purpose of the present study was to compare the cardioprotective effects of the extract from radix stephaniae tetrandrae (RST) and its individual compounds, tetrandrine (Tet) and fanchinoline (Fan). Secondly, we also compared the cardiac effects of the individual compounds and the RST extract with those of verapamil, a classical Ca2+ channel blocker. The Langendorff isolated perfused rat heart preparation was used. Regional ischaemia and reperfusion was employed to induce myocardial infarct and arrhythmia. Infarct, arrhythmia, heart rate and coronary artery flow were determined in hearts treated with vehicle, RST extract, Tet, Fan, or verapamil. It was found that RST extract, of which only 9% was Tet, and Tet alone produced equally potent ameliorating effects on arrhythmia and infarct induced by ischaemia and reperfusion without further inhibiting ischaemia-reduced heart rate and coronary artery flow. Fan had no effects on arrhythmia and infarct induced by ischaemia and reperfusion; but it induced S-T segment elevation and further reduced heart rate and coronary artery flow during ischaemia. Verapamil also ameliorated the effects of ischaemia and reperfusion on arrhythmia and infarct. It should be noted that 1 microM verapamil, that produced comparable effects on infarct and arrhythmia to the RST extract and Tet, further inhibited heart rate during ischaemia. The results indicate that the RST extract produces equally potent cardioprotective and anti-arrhythmic effects as Tet alone. Both RST extract and Tet may be better choices for the treatment of arrhythmia and infarct induced by myocardial ischaemia and reperfusion than the classical Ca2+ channel blocker, verapamil as they do not further reduce heart rate during ischaemia.  相似文献   

17.
The effect of superoxide dismutase (SOD), an oxygen-derived free radical scavenger, on rat splanchnic eicosanoid synthesis was examined following hemorrhagic shock. Anesthetized male rats were hemorrhaged to 30 mm Hg for 30 minutes (Shock), killed, or treated with the shed blood (Shock plus reperfusion). The Shock plus reperfusion group was treated with saline vehicle or SOD (2500, 5000, 7500, 10,000 or 15,000 U/Kg, i.v.) 15 minutes prior to the reperfusion of the shed blood. The superior mesenteric artery was removed in continuity with the end organ intestine (SV+SI) and perfused in vitro with oxygenated Krebs-Henseleit buffer (3 ml/min at 37 degrees C). Venous effluent was measured for basal release of 6-keto-PGF1 alpha, PGE2 and thromboxane B2 at 15, 30, 60 and 90 minutes of perfusion. The SV+SI compensated for acute shock by increased release of 6-keto-PGF1 alpha (300%) (and not PGE2 or thromboxane B2) which was abolished by reperfusion of the shed blood following shock. Prior treatment of the Shock plus reperfusion group with 7500 U/Kg or more of SOD restored the increased release of SV+SI 6-keto-PGF1 alpha found following shock alone (p less than 0.05). These data provided indirect evidence that ODFRs contributed to endogenous SV+SI regulation of PGI2 synthesis and release during hemorrhagic shock and reperfusion of shed blood.  相似文献   

18.
Previous studies have indicated that nitric oxide synthase (NOS) inhibitors can induce an increase of blood pressure and exacerbate myocardial injury induced by ischemia and reperfusion, whereas angiotensin II receptor antagonists protect the myocardium against injury induced by ischemia and reperfusion. Isolated hearts from male spontaneously hypertensive rats (SHR) or male Wistar-Kyoto rats (WKY) were subjected to 20 min global ischemia and 30 min reperfusion. Heart rate, coronary flow, left ventricular pressure, and its first derivatives (+/-dP/dt(max)) were recorded, and serum concentrations of asymmetric dimethylarginine (ADMA) and NO and the release of creatine kinase in coronary effluent were measured. The level of ADMA was significantly increased and the concentration of NO was decreased in SHR. Ischemia and reperfusion significantly inhibited the recovery of cardiac function and increased the release of creatine kinase, and ischemia and reperfusion-induced myocardial injury in SHR was aggravated compared with WKY. Vasodilation responses to acetylcholine of aortic rings were decreased in SHR. Treatment with losartan (30 mg/kg) for 14 days significantly lowered blood pressure, elevated the plasma level of NO, and decreased the plasma concentration of ADMA in SHR. Treatment with losartan significantly improved endothelium-dependent relaxation and cardiac function during ischemia and reperfusion in SHR. Exogenous ADMA also aggravated myocardial injury induced by ischemia and reperfusion in isolated perfused heart of WKY, as shown by increasing creatine kinase release and decreasing cardiac function. The present results suggest that the protective effect of losartan on myocardial injury induced by ischemia and reperfusion is related to the reduction of ADMA levels.  相似文献   

19.
Verapamil is an organic calcium antagonist which is believed to prevent the passage of calcium (Ca2+) across the cell membrane into the cell. In a rat pituitary perifusion-immunoprecipitation system, verapamil (50 microM) prevents the inhibitory effect of increased extracellular Ca2+ (5.4 mM) on basal and stimulated release of stored, prelabeled [3H]GH and [3H]PRL. [3H]GH release from pituitary explants perifused in standard medium (GIBCO Minimum Essential Medium: 1.8 mM Ca2+) is transiently increased by 50 microM verapamil while [3H]PRL release is suppressed. With continued exposure to 50 microM verapamil, [3H]GH release rates fall below (89.8 +/- 2.1% of base) preverapamil levels while [3H]PRL release rates simply remain suppressed (48.2 +/- 7.3% of base). With 250 microM verapamil, poststimulatory inhibition of [3H]GH release occurs more quickly, and after its withdrawal rebound release of both GH and PRL occur. Inhibition of [3H]GH release by 25 nM somatostatin (SRIF) and post-SRIF rebound [3H]GH release is not prevented by 50 microM verapamil. The early, rapid [3H]GH release phase of 1 mM dibutyryl cyclic AMP (dbcAMP) stimulation is potentiated by verapamil pretreatment, but only if the verapamil is continued during dbcAMP stimulation. Potassium (21 mM K+)-stimulated release of both 3H-labeled hormones is inhibited after similar pretreatment 50 microM verapamil. Conclusions: (a) verapamil antagonizes the inhibitory effects of increased extracellular Ca2+ on basal or dbcAMP-stimulated [3H]GH and [3H]PRL release; (b) in standard medium (1.8 mM Ca2+), 50 microM verapamil increases basal [3H]GH release suggesting either a direct effect or an antagonism of 1.8 mM extracellular Ca2+; (c) although verapamil-sensitive Ca2+ movement is not necessary for dbcAMP stimulation of [3H]GH release, verapamil potentiates dbcAMP-stimulated release; (d) because verapamil also inhibits K+-stimulated [3H]GH and [3H]PRL release, these observations support previous suggestions that K+- and dbcAMP-stimulated rapid hormone release occurs from different intracellular sites; and (e) because verapamil does not prevent any phase of SRIF action and since these two agents differentially alter K+- and cAMP-stimulated release, their mechanisms of action must partially differ.  相似文献   

20.
Direct monitoring of myoglobin efflux during ischemia and reperfusion has been limited because of inherent sample collection problems in the ischemic region. Recently, the cardiac dialysis technique has offered a powerful method for monitoring myocardial interstitial levels of low-molecular-weight compounds in the cardiac ischemic region. In the present study, we extended the molecular target to high-molecular-weight compounds by use of microdialysis probes with a high-molecular-mass cutoff and monitored myocardial interstitial myoglobin levels. A dialysis probe was implanted in the left ventricular free wall in anesthetized rabbits. The main coronary artery was occluded for 60 or 120 min. We examined the effects of myocardial ischemia and reperfusion on myocardial interstitial myoglobin levels. Interstitial myoglobin increased within 15 min of ischemia and continued to increase during 120 min of ischemia, whereas blood myoglobin increased at 45 min of ischemia. Lactate and myoglobin in the interstitial space increased during the same period. At 60 min of ischemia, reperfusion markedly accelerated interstitial myoglobin release. The interstitial myoglobin level was fivefold higher at 0-15 min of reperfusion than at 60-75 min of coronary occlusion. The dialysis technique permits earlier detection of myoglobin release and separately monitors myoglobin release during ischemia and reperfusion. Myocardial interstitial myoglobin levels can serve as an index of myocardial injury evoked by ischemia or reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号