首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cells play a critical role in the host defense against bacterial infection. Recently, apoptosis has been demonstrated to be essential in the regulation of host response to Pseudomonas aeruginosa. In this study we show that human mast cell line HMC-1 and human cord blood-derived mast cells undergo apoptosis as determined by the ssDNA formation after infection with P. aeruginosa. P. aeruginosa induced activation of caspase-3 in mast cells as evidenced by the cleavage of D4-GDI, an endogenous caspase-3 substrate and the generation of an active form of caspase-3. Interestingly, P. aeruginosa treatment induced up-regulation of Bcl-x(S) and down-regulation of Bcl-x(L). Bcl-x(S), and Bcl-x(L) are alternative variants produced from the same Bcl-x pre-mRNA. The former is proapoptotic and the latter is antiapoptotic likely through regulating mitochondrial membrane integrity. Treatment of mast cells with P. aeruginosa induced release of cytochrome c from mitochondria and loss of mitochondrial membrane potentials. Moreover, P. aeruginosa treatment reduced levels of Fas-associated death domain protein-like IL-1beta-converting enzyme-inhibitory proteins (FLIPs) that are endogenous apoptosis inhibitors through counteraction with caspase-8. Thus, human mast cells undergo apoptosis after encountering P. aeruginosa through a mechanism that likely involves both the Bcl family protein mitochondrial-dependent and the FLIP-associated caspase-8 pathways.  相似文献   

2.
Bak but not Bax is essential for Bcl-xS-induced apoptosis   总被引:2,自引:0,他引:2  
Bcl-x(S), a proapoptotic member of the Bcl-2 protein family, is localized in the mitochondria and induces apoptosis in a caspase- and BH3-dependent manner by a mechanism involving cytochrome c release. The way in which Bcl-x(S) induces caspase activation and cytochrome c release, as well as the relationship between Bcl-x(S) and other proapoptotic members of the Bcl-2 family, is not known. Here we used embryonic fibroblasts derived from mice deficient in the multidomain proapoptotic members of the Bcl-2 family (Bax and Bak) and the apoptotic components of the apoptosome (Apaf-1 and caspase-9) to unravel the cascade of events by which Bcl-x(S) promotes apoptosis. Our results show that Bak but not Bax is essential for Bcl-x(S)-induced apoptosis. Bcl-x(S) induced activation of Bak, which in turn promoted apoptosis by apoptosome-dependent and -independent pathways. These findings provide the first evidence that a proapoptotic Bcl-2 family protein induces apoptosis exclusively via Bak.  相似文献   

3.
In addition to direct bactericidal activities, such as phagocytosis and generation of reactive oxygen species (ROS), neutrophils can regulate the inflammatory response by undergoing apoptosis. We found that infection of human neutrophils with Mycobacterium tuberculosis (Mtb) induced rapid cell death displaying the characteristic features of apoptosis such as morphologic changes, phosphatidylserine exposure, and DNA fragmentation. Both a virulent (H37Rv) and an attenuated (H37Ra) strain of Mtb were equally effective in inducing apoptosis. Pretreatment of neutrophils with antioxidants or an inhibitor of NADPH oxidase markedly blocked Mtb-induced apoptosis but did not affect spontaneous apoptosis. Activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis, but it was markedly augmented and accelerated during Mtb-induced apoptosis. The Mtb-induced apoptosis was associated with a speedy and transient increase in expression of Bax protein, a proapoptotic member of the Bcl-2 family, and a more prominent reduction in expression of the antiapoptotic protein Bcl-x(L). Pretreatment with an inhibitor of NADPH oxidase distinctly suppressed the Mtb-stimulated activation of caspase-3 and alteration of Bax/Bcl-x(L) expression in neutrophils. These results indicate that infection with Mtb causes ROS-dependent alteration of Bax/Bcl-x(L) expression and activation of caspase-3, and thereby induces apoptosis in human neutrophils. Moreover, we found that phagocytosis of Mtb-induced apoptotic neutrophils markedly increased the production of proinflammatory cytokine TNF-alpha by human macrophages. Therefore, the ROS-dependent apoptosis in Mtb-stimulated neutrophils may represent an important host defense mechanism aimed at selective removal of infected cells at the inflamed site, which in turn aids the functional activities of local macrophages.  相似文献   

4.
5.
A loss of TNF receptors expression has been found in advanced lung cancers, and human A549 lung adenocarcinoma cells are resistant to the cytotoxic effects of TNF-alpha and cisplatin. Here, the mechanisms of the drug resistance of A549 were extensively studied by gene modulation of the cells by solamargine (SM) which was isolated from Solanum incanum herb. SM induced morphological changes of chromatin condensation, DNA fragmentation, and sub-G(1) peak in a DNA histogram of A549 cells, indicating cell death by apoptosis. SM elevated the expressions of TNF-R1 and -R2 and overcame the resistance of A549 cells to TNF-alpha and -beta. The recruitment of TRADD, FADD, and activation of caspase-8 and -3 in SM-treated A549 cells evidenced the activation of TNFRs signal transduction. In addition, release of cytochrome c from mitochondria, down-expression of Bcl-2 and Bcl-x(L), up-regulation of Bax, and caspase-9 activities were observed in SM-treated A549 cells. Combinational treatment of SM and cisplatin synergistically enhanced caspase-8, -9, and -3 activities in A549 cells. Thus, SM sensitizes A549 cells through TNFRs and mitochondria-mediated pathways and may have anticancer potential against TNFs- and cisplatin-resistance lung cancer cells.  相似文献   

6.
Alterations in cellular homeostasis that affect protein folding in the endoplasmic reticulum (ER) trigger a signaling pathway known as the unfolded protein response (UPR). The initially cytoprotective UPR will trigger an apoptotic cascade if the cellular insult is not corrected; however, the proteins required to initiate this cell death pathway are poorly understood. In this study, we show that UPR gene expression is induced in cells treated with ER stress agents in the presence or absence of murine caspase-12 or human caspase-4 expression and in cells that overexpress Bcl-x(L) or a dominant negative caspase-9. We further demonstrate that ER stress-induced apoptosis is a caspase-dependent process that does not require the expression of caspase-12 or caspase-4 but can be inhibited by overexpression of Bcl-x(L) or a dominant negative caspase-9. Additionally, treatment of human and murine cells with ER stress agents led to the cleavage of the caspase-4 fluorogenic substrate, LEVD-7-amino-4-trifluoromethylcoumarin, in the presence or absence of caspase-12 or caspase-4 expression, whereas Bcl-x(L) or a dominant negative caspase-9 overexpression inhibited LEVD-7-amino-4-trifluoromethylcoumarin cleavage. These data suggest that caspase-12 and caspase-4 are not required for the induction of ER stress-induced apoptosis and that caspase-4-like activity is not always associated with an initiating event.  相似文献   

7.
8.
Although expression of Bcl-2 has been shown to prevent apoptosis under many circumstances, there are several systems in which Bcl-2 fails to promote cell survival. We have previously reported that Bcl-2 and Bcl-x(L) display differential ability to protect WEHI-231 cells from multiple inducers of apoptosis. A possible explanation for this paradox was provided by the discovery of Bax. Bax is a Bcl-2-related protein which can inhibit the ability of Bcl-2 to enhance the survival of growth factor-dependent cell lines in the absence of growth factor. Consistent with the possibility that Bcl-2 function in WEHI-231 cells is inhibited by Bax, WEHI-231 cells were found to express a high level of Bax. To directly test the effects of Bax expression on Bcl-x(L) function, FL5.12 cells were transfected with both genes. Although Bax overexpression can inhibit Bcl-2 from prolonging cell survival upon growth factor withdrawal, Bax overexpression did not inhibit Bcl-x(L) from preventing apoptosis in this cell line. Although Bcl-2 and Bcl-x(L) were both found to be able to form heterodimers with Bax, the majority of Bax in both cases was not complexed to a partner. Our data suggest that Bcl-x(L) does not function by simply preventing the formation of Bax homodimers which promote cell death. Instead Bax appears to display selectivity in its ability to inhibit Bcl-2 but not Bcl-x(L) from prolonging survival. Furthermore, our data suggest that the abilities of Bcl-2 and Bcl-x(L) to promote cell survival are not identical and can be independently regulated within a cell. Regulation of a cell's apoptotic threshold is likely to result from a complex set of interactions among Bcl-2 family members and other, as yet uncharacterised, regulators of apoptosis.  相似文献   

9.
Experimental systemic lupus erythematosus (SLE) can be induced in mice following immunization with an anti-DNA mAb expressing a major Id, 16/6Id. Treatment with a peptide, designated human CDR1 (hCDR1; Edratide), that is based on the sequence of CDR1 of the 16/6Id ameliorated disease manifestations. In the present study, we investigated the roles of apoptosis and related molecules in BALB/c mice with induced experimental SLE following treatment with hCDR1. A higher state of activation and increased rate of apoptosis were found in lymphocytes of SLE-afflicted mice as compared with healthy controls. The latter effects were associated with up-regulated caspase-8 and caspase-3, and down-regulated Bcl-x(L). The ameliorative effects of hCDR1 were associated with down-regulation of caspase-8 and caspase-3, up-regulation of Bcl-x(L), and a reduced rate of apoptosis. Treatment of diseased mice with an apoptosis-reducing compound that inhibited caspases down-regulated the secretion of the pathogenic cytokine IFN-gamma and lowered the intensity of glomerular immune complex deposits and the levels of proteinuria. Furthermore, coincubation of Bcl-x(L) inhibitors with hCDR1-treated cells abrogated the ability of hCDR1 to reduce the activation state of lymphocytes and to down-regulate the secretion of IL-10 and IFN-gamma. Moreover, the Bcl-x(L)-expressing CD4(+)CD25(+) cells from hCDR1-treated mice induced the expression of Bcl-x(L) in CFSE-labeled CD4(+)CD25(-) cells of the SLE-afflicted mice. Thus, the reduction of apoptosis and the up-regulation of Bcl-x(L), which plays an apparent role in tolerance induction, contribute to at least part of the beneficial effects of hCDR1 on lupus manifestations.  相似文献   

10.
11.
Apoptosis induction through CD95 (APO-1/Fas) critically depends on generation of active caspase-8 at the death-inducing signaling complex (DISC). Depending on the cell type, active caspase-8 either directly activates caspase-3 (type I cells) or relies on mitochondrial signal amplification (type II cells). In MCF7-Fas cells that are deficient for pro-caspase-3, even high amounts of caspase-8 produced at the DISC cannot directly activate downstream effector caspases without mitochondrial help. Overexpression of Bcl-x(L) in these cells renders them resistant to CD95-mediated apoptosis. However, activation of caspase-8 in control (vector) and Bcl-x(L) transfectants of MCF7-Fas cells proceeds with similar kinetics, resulting in a complete processing of cellular caspase-8. Most of the cytosolic caspase-8 substrates are not cleaved in the Bcl-x(L) protected cells, raising the question of how Bcl-x(L)-expressing MCF7-Fas cells survive large amounts of potentially cytotoxic caspase-8. We now demonstrate that active caspase-8 is initially generated at the DISC of both MCF7-Fas-Vec and MCF7-Fas-Bcl-x(L) cells and that the early steps of CD95 signaling such as caspase-8-dependent cleavage of DISC bound c-FLIP(L), caspase-8-dependent clustering, and internalization of CD95, as well as processing of pro-caspase-8 bound to mitochondria are very similar in both transfectants. However, events downstream of mitochondria, such as release of cytochrome c, only occur in the vector-transfected MCF7-Fas cells, and no in vivo caspase-8 activity can be detected in the Bcl-x(L)-expressing cells. Our data suggest that, in Bcl-x(L)-expressing MCF7-Fas cells, active caspase-8 is sequestered on the outer mitochondrial surface presumably by association with the protein "bifunctional apoptosis regulator" in a way that does not allow substrates to be cleaved, identifying a novel mechanism of regulation of apoptosis sensitivity by mitochondrial Bcl-x(L).  相似文献   

12.
Transforming growth factor-beta1 (TGF-beta1) can inhibit cell proliferation or induce apoptosis in multipotent hematopoietic cells. To study the mechanisms of TGF-beta1 action on primitive hematopoietic cells, we used the interleukin-3 (IL-3)-dependent, multipotent FDCP-Mix cell line. TGF-beta1-mediated growth inhibition was observed in high concentrations of IL-3, while at lower IL-3 concentrations TGF-beta1 induced apoptosis. The proapoptotic effects of TGF-beta1 occur via a p53-independent pathway, since p53(null) FDCP-Mix demonstrated the same responses to TGF-beta1. IL-3 has been suggested to enhance survival via an increase in (antiapoptotic) Bcl-x(L) expression. In FDCP-Mix cells, neither IL-3 nor TGF-beta1 induced any change in Bcl-x(L) protein levels or the proapoptotic proteins Bad or Bax. However, TGF-beta1 had a major effect on Bcl-2 levels, reducing them in the presence of high and low concentrations of IL-3. Overexpression of Bcl-2 in FDCP-Mix cells rescued them from TGF-beta1-induced apoptosis but was incapable of inhibiting TGF-beta1-mediated growth arrest. We conclude that TGF-beta1-induced cell death is independent of p53 and inhibited by Bcl-2, with no effect on Bcl-x(L). The significance of these results for stem cell survival in bone marrow are discussed.  相似文献   

13.
Bcl-x(S), a pro-apoptotic member of the Bcl-2 protein family, is localized in the mitochondrial outer membrane and induces caspase-dependent and nerve growth factor (NGF)-inhibitable apoptosis in PC12 cells. The mechanism of action of Bcl-x(S) and how NGF inhibits this death are not fully understood. It is still unknown whether Bcl-x(S) induces mitochondrial cytochrome c release, and which apoptotic step NGF inhibits. We show that Bcl-x(S) induces cytochrome c release and caspase-3 activation in several cell types, and that in PC12 cells, these events are inhibited by NGF treatment. The survival effect of NGF was inhibited by inhibitors of protein kinase C (PKC), phosphatidylinositol-3-kinase (PI 3-kinase), and the mitogen-activated protein kinase kinase (MEK) inhibitors GF109203X, LY294002, and U0126. These findings show that cytochrome c release and caspase-3 activation participate in Bcl-x(S)-induced apoptosis, and that NGF inhibits Bcl-x(S)-induced apoptosis at the mitochondrial level via the PKC, PI 3-kinase, and MEK signaling pathways.  相似文献   

14.
摘要 目的:探讨Smac基因调控Caspase-3表达对紫杉醇耐药肺腺癌细胞株生物活性及经典凋亡信号通路的作用机制。方法:取构建好的耐药A549细胞,将其分为A549细胞(LC)组、A549细胞+Smac-NC(SN)组、A549细胞+Smac抑制剂(SI)组、A549细胞+Smac激动剂(SM)组、A549细胞+Caspase-3-NC(CN)组、A549细胞+Caspase-3抑制剂(CI)组、A549细胞+Caspase-3激动剂(CM)组、A549细胞+Smac激动剂+Caspase-3激动剂(MM)组;Real-time PCR法检测正常肺上皮细胞及4种肺腺癌细胞系中Smac、Caspase-3表达水平,将阴性对照、Smac、Caspase-3类似物转染至紫杉醇耐药肺腺癌细胞株,MTT法检测细胞增殖,流式细胞仪检测细胞凋亡,免疫印迹法检测经典凋亡信号通路表达,并分析Smac与Caspase-3的相关性。结果:肺腺癌细胞系中的Smac、Caspase-3 mRNA表达量显著低于正常肺上皮细胞系BEAS-2B(P<0.05),其中A549的Smac、Caspase-3 mRNA值最小(P<0.05),因此选取其作为此次实验细胞;LC组与SN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与SN组相比,SI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与SI组相比,SM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);LC组与CN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CN组相比,CI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与CI组相比,CM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);SM组与CM组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CM组相比,MM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);Smac与Caspase-3呈现正相关(r=0.470,P=0.002),组间具有显著差异。结论:Smac基因可显著改善紫杉醇耐药肺腺癌细胞株细胞生物活性,并激活经典凋亡信号通路,其作用机制可能与调控Caspase-3表达有关。  相似文献   

15.
BACKGROUND: The mechanism by which aspirin (ASA) acts to protect against human cancer is not yet known. We recently showed that ASA triggers the formation of a new series of potent bioactive eicosanoids, 15-epi-lipoxins (15-epi-LXs or ASA-triggered LX [ATL]), during interactions between prostaglandin endoperoxide synthase-2 (PGHS-2) in endothelial cells and 5-lipoxygenase (LO) in leukocytes. Here, we investigated the transcellular biosynthesis of these eicosanoids during costimulation of the human tumor A549 cell line (alveolar type II epithelial cells) and neutrophils, and evaluated their impact on cell proliferation. MATERIALS AND METHODS: A549 cells and isolated neutrophils were coincubated and mRNA expression levels of key enzymes in eicosanoid biosynthesis were measured. In addition, product formation was analysed by physical methods. The effect of LX on cell proliferation was determined by using a soluble microculture tetrazolium (MTT) assay and by measuring [3H]-thymidine incorporation. RESULTS: Interleukin-1 beta (IL-1 beta)-primed A549 cells showed selective elevation in the levels of PGHS-2 mRNA and generated 15-hydroxyeicosatetraenoic acid (15-HETE). ASA markedly increased 15-HETE formation by A549 cells, while treatment with an inhibitor of cytochrome P450 reduced by approximately 50%, implicating both PGHS-2- and cytochrome P450-initiated routes in 15-HETE biosynthesis in these cells. Maximal production of 15-HETE from endogenous sources occurred within 24 hr of cytokine (IL-1 beta) exposure and declined thereafter. Chiral analysis revealed that approximately 85% of ASA-triggered epithelial-derived 15-HETE carries its carbon 15 alcohol group in the R configuration. Costimulation of ASA-treated A549 cells and polymorphonuclear neutrophilic leukocytes (PMN) led to production of both LXA4 and LXB4, as well as 15-epi-LXA4 and 15-epi-LXB4 (9.5 +/- 0.5 ng LX/10(7) A549 cells). 15-epi-LXA4 accounted for approximately 88% of the total amount of LXA4 produced. In addition to LXs, stimulation of A549 cells and PMN also liberated substantial amounts (77.2 +/- 8.2 ng/10(7) A549 cells) of peptidoleukotrienes (pLTs), which were not generated by either cell type alone. Addition of ASA to these co-incubations led to an increase in the amounts of LXs generated that was paralleled by a decrease in pLTs. LXA4, LXB4, 15-epi-LXA4 and 15-epi-LXB4, as well as dexamethasone, inhibited cell proliferation at 100 nM range with a rank order of activity of 15-epi-LXB4 >>> LXB4 > dexamethasone > or = 15-epi-LXA4 > LXA4. CONCLUSIONS: These results indicate that ASA promotes the formation of antiproliferative 15-epi-LXs by epithelial cell-leukocyte interactions. Moreover, they suggest that these novel eicosanoids, when generated within the microenvironment of tissues, may contribute to ASA's therapeutic role in decreasing the risk of human cancer.  相似文献   

16.
We have investigated the unique role of the insulin receptor (IR) and the balance of its isoforms A and B in the regulation of apoptosis in simian virus 40 (SV40)-immortalized neonatal hepatocytes. Immortalized hepatocytes lacking (HIR KO) or expressing the entire IR (HIR LoxP), and cells expressing either IRA (HIR RecA) or IRB (HIR RecB) have been generated. IR deficiency in hepatocytes increases sensitivity to the withdrawal of growth factors, because these cells display an increase in reactive oxygen species, a decrease in Bcl-x(L), a rapid accumulation of nuclear Foxo1, and up-regulation of Bim. These events resulted in acceleration of caspase-3 activation, DNA laddering, and cell death. The single expression of either IRA or IRB produced a stronger apoptotic phenotype. In these cells, protein complexes containing IRA or IRB and Fas/Fas-associating protein with death domain activated caspase-8, and, ultimately, caspase-3. In hepatocytes expressing IRA, Bid cleavage and cytochrome C release were increased whereas direct activation of caspase-3 by caspase-8 and a more rapid apoptotic process occurred in hepatocytes expressing IRB. Conversely, coexpression of IRA and IRB in IR-deficient hepatocytes rescued from apoptosis. Our results suggest that balance alteration of IRA and IRB may serve as a ligand-independent apoptotic trigger in hepatocytes, which may regulate liver development.  相似文献   

17.
Rat basophilic leukemia cells exhibit 12-lipoxygenase activity only upon cell disruption. 12-Lipoxygenase may also possess 15-lipoxygenase activity, as is indicated by the formation of low amounts of 15(S)-HETE, in addition to the predominant product 12(S)-HETE, upon incubation of partially purified 12-lipoxygenase with arachidonic acid. With 5(S)-HPETE as substrate not only 5(S), 12(S)-diHETE and 5(S), 15(S)-diHETE are formed, but also LTA4, as was indicated by the presence of LTA4-derived LTB4-isomers. 12-Lipoxygenase from rat basophilic leukemia cells has many features in common with 12-lipoxygenase from bovine leukocytes. As was suggested for the latter enzyme, 12-lipoxygenase from rat basophilic leukemia cells may represent the remaining LTA4-synthase activity of 5-lipoxygenase, of which the 5-dioxygenase activity has disappeared upon cell disruption. Such a possible shift from 5-lipoxygenase activity to 12-lipoxygenase activity could not simply be induced by interaction of cytosolic 5-lipoxygenase with a membrane fraction after cell disruption, but may involve release of membrane-associated 5-lipoxygenase upon disruption of activated rat basophilic leukemia cells.  相似文献   

18.
The role of p38 mitogen-activated protein kinase (MAPK) in apoptosis is a matter of debate. Here, we investigated the involvement of p38 MAPK in endothelial apoptosis induced by tumor necrosis factor alpha (TNF). We found that activation of p38 MAPK preceded activation of caspase-3, and the early phase of p38 MAPK stimulation did not depend on caspase activity, as shown by pretreatment with the caspase inhibitors z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and Boc-Asp(OMe)-fluoromethylketone (BAF). The p38 MAPK inhibitor SB203580 significantly attenuated TNF-induced apoptosis in endothelial cells, suggesting that p38 MAPK is essential for apoptotic signaling. Furthermore, we observed a time-dependent increase in active p38 MAPK in the mitochondrial subfraction of cells exposed to TNF. Notably, the level of Bcl-x(L) protein was reduced in cells undergoing TNF-induced apoptosis, and this reduction was prevented by treatment with SB203580. Immunoprecipitation experiments revealed p38 MAPK-dependent serine-threonine phosphorylation of Bcl-x(L) in TNF-treated cells. Exposure to lactacystin prevented both the downregulation of Bcl-x(L) and activation of caspase-3. Taken together, our results suggest that TNF-induced p38 MAPK-mediated phosphorylation of Bcl-x(L) in endothelial cells leads to degradation of Bcl-x(L) in proteasomes and subsequent induction of apoptosis.  相似文献   

19.
20.
FL5.12 pro-B lymphoma cells utilize the mitochondrial pathway to apoptosis in response to tumor necrosis factor (TNF) receptor occupation, yet high levels of the Bcl-2 family antiapoptotic protein, Bcl-x(L), fail to protect these cells against TNF-receptor-activated death. Bcl-x(L) expression delays, but does not totally block, the release of mitochondrial cytochrome c (cyt c) in these cells in response to TNFalpha-induced apoptosis and caspase-9 is processed prior to mitochondrial cyt c release under these circumstances. Early processing of caspase-9 also occurred in Apaf-1 knockout murine fibroblasts in response to TNF-receptor occupation. A caspase-9-specific inhibitor was more effective in delaying the progression of apoptosis in the FL5.12 Bcl-x(L) cells than was an inhibitor specific to caspase-3. Furthermore, downregulation of caspase-9 levels by RNA interference resulted in partial protection of these cells against TNF-receptor-activated apoptosis, indicating that caspase-9 activation contributed to early amplification of the caspase cascade. Consistent with this, proteolytic processing of caspase-9 was observed prior to processing by caspase-3, suggesting that caspase-3 was not responsible for early caspase-9 activation. We show that murine caspase-9 is efficiently processed by active caspase-8 at SEPD, the motif at which caspase-9 autoprocesses following its recruitment to the apoptosome. Our results suggest that, in addition to processing procaspase-3 and the BH3 protein Bid, active caspase-8 can cleave and activate procaspase-9 in response to TNF receptor crosslinking in murine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号