首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coenzymic activities of the following NADP derivatives were investigated: 2'-O-(2-carboxyethyl)phosphono-NAD (I), N6-(2-carboxyethyl)-NADP (II), 2'-O-(2-carboxyethyl)phosphono-N6-(2-carboxyethyl)-NAD (III), 2'-O-[N-(2-aminoethyl)carbamoylethyl]phosphono-NAD (IV), N6-[N-(2-aminoethyl)carbamoylethyl]-NADP (Va), 2',3'-cyclic NADP, and 3'-NADP. Derivatives I and IV show the effects of modification at the 2'-phosphate group, and derivatives II and Va show those at the 6-amino group of NADP. As for enzymes, alcohol, isocitrate, 6-phosphogluconate, glucose, glucose-6-phosphate, and glutamate dehydrogenases were used. These enzymes were grouped on the basis of the ratio of the activities for NAD and NADP into NADP-specific enzymes (ratio less than 0.01), NAD(P)-specific enzymes (0.01 less than ratio less than 100), and NAD-specific enzymes (ratio greater than 100). For NADP-specific enzymes, modifications at the 2'-phosphate group of NADP caused great loss of cofactor activity. The relative cofactor activities (NADP = 100%) of derivatives I and IV for these enzymes were 0.5-20 and 0.01-0.5%, respectively. On the other hand, NAD(P)-specific enzymes showed several types of responses to the NADP derivatives. The relative cofactor activities of I and IV for Leuconostoc mesenteroides and Bacillus stearothermophilus glucose-6-phosphate dehydrogenases and beef liver glutamate dehydrogenase were 60-200%; whereas, for B. megaterium glucose dehydrogenase and L. mesenteroides alcohol dehydrogenase, the values were 0.8-8%. For NAD-specific enzymes, these values were 20-50%. The relative cofactor activities of 2',3'-cyclic NADP and 3'-NADP were very low (less than 0.2%) except for beef liver glutamate dehydrogenase, B. stearothermophilus glucose-6-phosphate dehydrogenase, and horse liver alcohol dehydrogenase. Kinetic studies showed that the losses of the cofactor activity of NADP by these modifications were mainly due to the increase of the Km value. The mechanisms of coenzyme specificity of dehydrogenases are discussed. Unlike the 2'-phosphate group, the 6-amino group is common to NAD and NADP, and the effects of modification at the 6-amino group were independent of the coenzyme specificity of enzymes used for the assay. Derivatives II and Va had high relative cofactor activities (65-130%) for most of the enzymes except for isocitrate and glucose dehydrogenases (less than 1%) and L. mesenteroides alcohol dehydrogenase (20-60%). The cofactor activity of derivative III was generally lower than those of I and II.  相似文献   

2.
The catalytic activity, expressed as Km and Vmax values, of 16 enzymes of practical interest with the macromolecular coenzymes poly(ethylene glycol)-N6-(2-aminoethyl)-NAD+ and poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ and their low molecular weight precursors N6-(2-aminoethyl)-NAD+ and N6-(2-aminoethyl)-NADP+, was investigated. The enzymes examined are of direct interest for organic synthesis (i.e. alcohol dehydrogenase from yeast, horse liver, or Thermoanaerobium brockii, lactic dehydrogenase, and several hydroxysteroid dehydrogenases) or are used for the regeneration of NAD+, NADP+, NADH, or NADPH (i.e. glutamate dehydrogenase from liver or Proteus, formate dehydrogenase, glucose dehydrogenase, and malic enzyme). The cycling efficiency of poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ was examined with coupled-enzymes or coupled-substrates systems. Poly(ethylene glycol)-N6-(2-aminoethyl)-NAD+ and, even more so, poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ were excellent coenzymes with several dehydrogenases. In addition, the coenzymatic properties of N6-(3-sulfonatopropyl)-NAD+, an NAD+ derivative carrying a strong anionic group, were compared with those of the newly synthesized N6-(2-hydroxy-3-trimethylammonium propyl)-NAD+, an NAD+ derivative carrying a strong cationic group. It was expected that the presence of the sulfonic or quaternary ammonium group would enhance the residence time of the coenzyme inside continuous-flow reactors if membranes with anionic or cationic groups, respectively, were used.  相似文献   

3.
Based on an unexpected transformation of N (1)-(2-aminoethyl)-NAD(P) to N6-(2-aminoethy1)-NAD(P) under mild aqueous conditions (pH 6.0-6.5, 50°C) synthesis of uniform macromolecular derivatives of N6-alkylated NAD and N6-alkylated NADP was possible, with, in most cases, acceptable overall yields (6-37%). The usual steps of (a) the chemical reduction with Na2S2O4,(b) the Dimroth rearrangement under harsh alkaline conditions and (c) the enzymatic or chemical oxidation were omitted. This represents a significant simplification of the procedure. A common procedure for the synthesis of macromolecular N6-(2-aminoethyl)-NAD(P) derivatives was pursued, coupling N6-(2-aminoethyl)-NAD(P) to several water-soluble copolymers containing maleic acid anhydride. PEG (Mr = 20000)-N6-(2-aminoethl)-NAD, polyvinylpyrrolidone (Mr,= 160000)-N6-(2-aminoethylNAD and dextran (Mr= 70000)-N6-(2-aminoethyl)-NAD were synthesized by covalently binding N6-(2-aminoethyl)-NAD to the corresponding carboxylated polymers by the carbodiimide method. PEG (Mr= 4000 and 20000-N6-(2-aminoethyl)-NADP was efficiently synthesized by covalent attachment of N6-(2-aminoethyl)-NADP to N-hydroxy-succinimide activated carboxylate PEG (Mr= 4000 and 20000), avoiding the carbodiimide method, which would lead simultaneously to 2'3'-cyclic NADP derivatives. Except for the macromolecular cofactor derivatives based on copolymers containing maleic acid anhydride, the total enzymatic reducibility of the macromolecular N-(2-aminoethyl)-NAD(P) derivatives was satisfactory (90-95%).  相似文献   

4.
Based on an unexpected transformation of N (1)-(2-aminoethyl)-NAD(P) to N6-(2-aminoethy1)-NAD(P) under mild aqueous conditions (pH 6.0-6.5, 50°C) synthesis of uniform macromolecular derivatives of N6-alkylated NAD and N6-alkylated NADP was possible, with, in most cases, acceptable overall yields (6-37%). The usual steps of (a) the chemical reduction with Na2S2O4,(b) the Dimroth rearrangement under harsh alkaline conditions and (c) the enzymatic or chemical oxidation were omitted. This represents a significant simplification of the procedure. A common procedure for the synthesis of macromolecular N6-(2-aminoethyl)-NAD(P) derivatives was pursued, coupling N6-(2-aminoethyl)-NAD(P) to several water-soluble copolymers containing maleic acid anhydride. PEG (Mr = 20000)-N6-(2-aminoethl)-NAD, polyvinylpyrrolidone (Mr,= 160000)-N6-(2-aminoethylNAD and dextran (Mr= 70000)-N6-(2-aminoethyl)-NAD were synthesized by covalently binding N6-(2-aminoethyl)-NAD to the corresponding carboxylated polymers by the carbodiimide method. PEG (Mr= 4000 and 20000-N6-(2-aminoethyl)-NADP was efficiently synthesized by covalent attachment of N6-(2-aminoethyl)-NADP to N-hydroxy-succinimide activated carboxylate PEG (Mr= 4000 and 20000), avoiding the carbodiimide method, which would lead simultaneously to 2′3′-cyclic NADP derivatives. Except for the macromolecular cofactor derivatives based on copolymers containing maleic acid anhydride, the total enzymatic reducibility of the macromolecular N-(2-aminoethyl)-NAD(P) derivatives was satisfactory (90-95%).  相似文献   

5.
The N-1 position of the adenine ring of NADP was selectively alkylated by the reaction of 2',3'-cyclic NADP with 3-propiolactone to yield 2',3'-cyclic 1-(2-carboxyethyl)-NADP (I). Derivative I was converted to a mixture of the isomers of N6-(2-carboxyethyl)-NADP with their phosphate groups at the 2' or 3' position (IIa and IIb) by chemical reduction, alkaline rearrangement and chemical reoxidation. Carbodiimide coupling of the mixture of IIa and IIb to alpha, omega-diaminopoly(ethylene glycol) gave the 2', 3'-cyclic derivative of poly(ethylene glycol)-bound NADP (III), which was enzymically hydrolyzed to yield poly(ethylene glycol)-bound NADP (PEG-NADP). PEG-NADP has good cofactor activity (16-100% of that of NADP) for NADP-specific and NAD(P)-specific dehydrogenases except isocitrate and glucose dehydrogenases. For NAD-specific enzymes, PEG-NADP has higher cofactor activity than NADP: for horse liver alcohol dehydrogenase, the cofactor activity of PEG-NADP is 40 times that of NADP and 14% of that of NAD. Kinetic studies show that for most of enzymes tested, Km values for PEG-NADP are larger than those for NADP and V values for PEG-NADP are similar to those for NADP. PEG-NADP proved to be applicable in a continuous enzyme reactor, in which reactions of glutamate dehydrogenase and glucose-6-phosphate dehydrogenase were coupled by the recycling of PEG-NADP.  相似文献   

6.
Reaction of AMP with formaldehyde and 3-mercaptopropionic acid at pH 11.7 gave a new AMP derivative, N6-[(2-carboxyethyl)thiomethyl]-AMP (I) in 91% yield and reaction at pH 3.1 gave another new derivative, N6,N6-bis[(2-carboxyethyl)thiomethyl]-AMP (II) in 57% yield. The structures were determined by their 13C and 1H nuclear magnetic resonance spectra coupled with those of the simple analogues, N6-[(2-carboxyethyl)thiomethyl]-9-methyladenine (III) and N6,N6-bis[(2-carboxyethyl)thiomethyl]-9-methyladenine (IV) which were synthesized from 9-methyladenine in the same way as for derivatives I and II. ADP and ATP were treated in the same way as AMP to afford the corresponding carboxyl derivatives, N6-[(2-carboxyethyl)thiomethyl]-ADP (V), N6-[(2-carboxyethyl)thiomethyl]-ATP (VI), N6,N6-bis[(2-carboxyethyl)thiomethyl]-ADP (X) and N6,N6-bis[(2-carboxyethyl)thiomethyl]-ATP (XI) in 71%, 75%, 53% and 40% yield, respectively. These compounds were coupled to 1,3-diaminopropane with a water-soluble carbodiimide to give the corresponding amino derivatives, N6-([N-3-aminopropyl)carbamoylethyl]thiomethyl)-ADP (VIII), N6-(N-(3-aminopropyl)carbamoylethyl]thiomethyl)-ATP (IX), N6,N6-bis([N-(3-aminopropyl)carbamoylethyl]thiomethyl)-ADP (XIII), and N6,N6-bis([N-(3-aminopropyl)carbamoylethyl]thiomethyl)-ATP (XIV), which were further bound to CNBr-activated dextran to give new polymer-bound derivatives of ADP and ATP. These free and bo-nd derivatives were tested for their coenzymic activities against several kinases. The activities of the ADP derivatives, V, VIII, X, XIII, dextran-bound VIII, and dextran-bound XIII against acetate kinase were 82%, 81%, 68%, 55%, 35%, and 15%, respectively, relative to ADP and those of the ATP derivatives, VI, IX, XI, XIV, dextran-bound IX, and dextran-bound XIV against hexokinase were 88%, 94%, 60%, 81%, 58%, and 49%, respectively, relative to ATP.  相似文献   

7.
Alkylation at N-1 of the NADP+ adenine ring with 3,4-epoxybutanoic acid gave 1-(2-hydroxy-3-carboxypropyl)-NADP+. Enzymic reduction of the latter, followed by alkaline Dimroth rearrangement and enzymic reoxidation, gave N6-(2-hydroxy-3-carboxypropyl)-NADP+. On the other hand, bromination at C-8 of the NADP+ adenine ring, followed by reaction with the disodium salt of 3-mercaptroproionic acid, gave 8-(2-carboxyethylthio)-NADP+. Carbodimide coupling of the three carboxylic NADP+ derivatives to polyethyleneimine afforded the corresponding macromolecular NADP+ analogues. The carboxylic and the polyethyleneimine derivatives synthesized have been shown to be co-enzymically active with yeast glucose-6-phosphate dehydrogenase, liver glutamate dehydrogenase and yeast aldehyde dehydrogenase. The degree of efficiency relative to NADP+ with the three enzymes ranged from 17% to 100% for the carboxylic derivatives and from 1% to 36% for the polyethyleneimine analogues. On comparing the efficiences with the three enzymes of the N-1 derivatives to the one of the corresponding N6 anc C-8 analogues, the order of activity was N-1 greater than N6 greater C-8, except in the case of the carboxylic compounds with glutamate dehydrogenase, where this order was inverted. None of these modified cofactors were active with pig heart isocitrate dehydrogenase.  相似文献   

8.
P S Deng  Y Hatefi  S Chen 《Biochemistry》1990,29(4):1094-1098
N-Arylazido-beta-alanyl-NAD+ [N3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+] has been prepared by alkaline phosphatase treatment of arylazido-beta-alanyl-NADP+ [N3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NADP+]. This NAD+ analogue was found to be a potent competitive inhibitor (Ki = 1.45 microM) with respect to NADH for the purified bovine heart mitochondrial NADH dehydrogenase (EC 1.6.99.3). The enzyme was irreversibly inhibited as well as covalently labeled by this analogue upon photoirradiation. A stoichiometry of 1.15 mol of N-arylazido-beta-alanyl-NAD+ bound/mol of enzyme, at 100% inactivation, was determined from incorporation studies using tritium-labeled analogue. Among the three subunits, 0.85 mol of the analogue was bound to the Mr = 51,000 subunit, and each of the two smaller subunits contained 0.15 mol of the analogue when the dehydrogenase was completely inhibited upon photolysis. Both the irreversible inactivation and the covalent incorporation could be prevented by the presence of NADH during photolysis. These results indicate that N-arylazido-beta-alanyl-NAD+ is an active-site-directed photoaffinity label for the mitochondrial NADH dehydrogenase, and are further evidence that the Mr = 51,000 subunit contains the NADH binding site. Previous studies using A-arylazido-beta-alanyl-NAD+ [A3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+] demonstrated that the NADH binding site is on the Mr = 51,000 subunit [Chen, S., & Guillory, R. J. (1981) J. Biol. Chem. 256, 8318-8323]. Results are also presented to show that N-arylazido-beta-alanyl-NAD+ binds the dehydrogenase in a more effective manner than A-arylazido-beta-alanyl-NAD+.  相似文献   

9.
N4-[N-(6-trifluoroacetylamidocaproyl)-2-aminoethyl]-5'-O-dimethoxy trityl -5-methyl-2'-deoxycytidine-3'-N,N-diisopropyl-methylphosphoramidite++ + has been synthesized. This N4-alkylamino deoxycytidine derivative has been incorporated into oligonucleotide probes during chemical DNA synthesis. Subsequent to deprotection and purification, fluorescent (fluorescein, Texas Red and rhodamine), chemiluminescent (isoluminol), and enzyme (horseradish peroxidase, alkaline phosphatase) labels have been specifically incorporated. Detection limits of the labels and labeled probes were assessed. Also, the detection limits and nonspecific binding of the labeled probes in sandwich hybridization assays were determined. The enzyme modified oligonucleotides were found to be significantly better labeling materials than the fluorescent or chemiluminescent derivatives, providing sensitivities comparable to 32P-labeled probes.  相似文献   

10.
The binding to yeast alcohol dehydrogenase of NAD+ and its five derivatives (N6-[2-[N-[2-[N-(2-methacrylamidoethyl)carbamoyl]ethyl] carbamoyl]ethyl]-NAD (I), N6-[N-[2-[N-(2-methacrylamidoethyl) carbamoyl]ethyl]carbamoylmethyl]-NAD (II), copolymer of I with acrylamide (PA-I), copolymer of II with acrylamide (PA-II), and copolymer of I with N,N-dimethylacrylamide (PDMA-I] were studied statically and kinetically by the stopped-flow method by using the quenching of the enzyme fluorescence in the presence of pyrazole. Apparent dissociation constants and apparent rate constants were determined therefrom. It was concluded that (1) the N6-CH2CH2CO group (of I) is effective in making the derivative bind more strongly as well as faster than NAD+, while the N6-CH2CO group (of II) is not; and (2) the binding of the polymer derivatives of NAD+ to the enzyme is not essentially weaker and slower than that of native NAD+, but is even faster in some cases. The coenzymic activities of the above compounds were also determined with yeast alcohol dehydrogenase, pig heart malate dehydrogenase, and rabbit muscle lactate dehydrogenase.  相似文献   

11.
A NADPH cytochrome c oxidoreductase purified from membranes of rabbit peritoneal neutrophil was shown to behave as the NADPH dehydrogenase component of the O2- generating oxidase complex. A photoactivable derivative of NADP+, azido nitrophenyl-gamma-aminobutyryl NADP+ (NAP4-NADP+), was synthesized in its labeled [3H] form and used to photolabel the NADPH cytochrome c reductase at different stages of the purification procedure. Control assays performed in dim light indicated that the reduced form of NADP4-NADP+ generated by reduction with glucose-6-phosphate and glucose-6-phosphate dehydrogenase was oxidized at virtually the same rate as NADPH. Upon photoirradiation of the purified reductase in the presence of [3H]NAP4-NADP+ and subsequent separation of the photolabeled species by sodium dodecyl sulfate polyacrylamide gel electrophoresis, radioactivity was found to be present predominantly in a protein band with a molecular mass of 77-kDa and accessorily in bands of 67-kDa and 57-kDa. Evidence is provided that the 67-kDa and 57-kDa proteins arose from the 77-kDa protein by proteolysis. Despite removal of part of the sequence, the proteolyzed proteins were still active in catalyzing electron transport from NADPH to cytochrome c and in binding the photoactivable derivative of NADP+.  相似文献   

12.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

13.
To elucidate the antibody-(2'-5')oligoadenylate relation to the mode of the hapten-immunogen conjugation, a new (2'-5')oligoadenylic acid trimer derivative containing a 2'-terminal N6-(5-carboxypentyl)adenosine and its 125I-labeled immunogenic conjugate were synthesized. The immunization with this conjugate and with a conjugate based on the 2',3'-O-[1-(2-carboxyethyl)]ethylidene derivative of the (2'-5')triadenylic acid gave antisera with different affinities toward modified (2'-5')oligonucleotides. Epitopes involved in the (2'-5')oligomer-binding to different antisera were found.  相似文献   

14.
《Free radical research》2013,47(1):221-227
Novel iron and copper complexes having tris[N-(5-methyl-2-pyridylmethyl)-2-aminoethyl]amine (5MeT-PAA), tris[N-(3-methyl-2-pyridylmethyl)-2-aminoethyl]amine(3MeTPAA),rris[N-(5-methoxycarbonyl-2-pyridylmethyl)-2-aminoethyl]amine (TNAA), tris[(2-thienylmethyI)-2-aminoethyl]amine (TTAA), tris[(2-furylniethyl)-2-aminoethyl]amine (TFAA) or tris[(2-imidazolyl)-2-aminoethyl]amine (TIAA) as ligand. were synthesized to examine the superoxide dismutase (SOD) activity. The concentrations of Fe-3MeTPAA and Fe-TIAA equivalent to 1 unit of SOD (IC50) were 0.5 μM and I.O μM. respectively. Fe-3MeTPAA and Fe-TIAA had higher SOD activity than other Fe and Cu complexes and protected Escherichiu coli cells from paraquat toxicity. In case of using tris[N-(Cmethyl-2-pyridylrnethyl)-2-aminoethyl]amine (6MeTPAA) as ligand, the Fe complex could not be obtained, which may be due to the steric hindrance of Cmethyl substituent. Generally, Cu complexes had low SOD activity, compared with Fe complexes, and could not suppress paraquat toxicity.  相似文献   

15.
A series of N-carboxyalkyl derivatives of L-leucyl-L-alanine was synthesized and tested as inhibitors of the zinc endoproteinase thermolysin. The purpose of the study was to determine whether bifunctional N-carboxyalkyl compounds with secondary metal coordinating groups are more potent inhibitors than analogs lacking such an additional binding function. Reductive condensation of L-leucyl-L-alanine (LA) with pyruvic, oxalacetic, alpha-ketoglutaric, 2-oxopentanoic, 4-ethyloxalacetic, or imidazoylpyruvic acids gave N-[1(R, S)-carboxyethyl]-LA (I), N-[1(R, S)-carboxy-2-carboxyethyl]-LA (II), N-[1(R, S)-carboxy-3-carboxypropyl]-LA (III), N-[1(R, S)-carboxy-n-butyl]-LA (IV), N-[1(R, S)-2-ethylcarboxyethyl]-LA (V), and N-[1(R, S)-carboxy-2-(4-imidazoyl-ethyl]-LA (VI), respectively. Values of KI determined with furylacryloyl-Gly-Leu-NH2 as substrate were 116 +/- 21, 7.4 +/- 1.8, 6.3 +/- 0.5, 19.7 +/- 1.5, 17.0 +/- 1.0, and 3.3 +/- 0.1 microM for compounds I-VI, respectively. Although bifunctional inhibitors II, III, and VI were indeed more potent than I, they were not much more effective than analogs IV and V that contained noncoordinating functionalities of comparable size. The results do not provide strong evidence for chelation of the active site zinc ion as proposed, although such interactions do not appear to be ruled out altogether.  相似文献   

16.
K Yagi  N Ohishi  Y Kyogoku 《Biochemistry》1976,15(13):2877-2880
Ninety-nine percent 15N-enriched flavins were synthesized and their proton decoupled 15N resonances were observed. The enriched compounds were [1,3-15N]riboflavin, [1,3,5-15N]riboflavin, [1,3-15N]riboflavin 5'-phosphate, [1,3,5-15N]riboflavin 5'-phosphate, and [1,3,5-15N] flavin adenine dinucleotide, [1,3,5-15N] lumiflavin, and [1,3,5-15N] lumichrome. By comparison of their spectra and from th- nuclear Overhauser effect data each 15N resonance peak could be assigned to each 15N nucleus. The order of the chemical shifts well corresponds to that of the calculated pi-electron densities. The N-3 nucleus gives the most intense inverted peak and the N-5 nucleus a small noninverted peak. By changing pH from neutral to alkaline, the chemical shift and the intensity of signal were mostly affected in the N-3 resonance of riboflavin 5'-phosphate. The N-5 signal of flavin adenine dinucleotide showed a fairly large downfield shift with the increase of temperature. These observations can be well interpreted by the chemical structure and the proposed conformation of riboflavin 5'-phosphate and flavin adenine dinucleotide.  相似文献   

17.
Affinity labeling of E. coli ribosomes with the 2',3'-O-[4-(N-2-chloroethyl)-N-methyl-amino]benzylidene derivative of AUGU6 (AUGU6-[14C]CHRCl) was studied within the pretranslocational complex ribosome.AUGU6[14C]CHRCl.tRNA(fMet)(P-site).fMetPhe-tR NA(Phe)(A-site) and posttranslocational complex ribosome.AUGU6[14C]CHRCl.fMetPhe-tRNA(Phe)(P-site). Both 30S and 50S subunits were labeled within these complexes, but the extent of 30S subunit modification was 6-8-fold higher than those for 50S subunit. Ribosomal proteins of both subunits were found to be labeled preferentially. Proteins S1, S5, S11, L1 were identified to be crosslinked with AUGU6[14C]CHRCl within the pretranslocational complex and S7--within the posttranslocational complex from the data of two-dimensional electrophoresis in the polyacrylamide gel.  相似文献   

18.
The interaction of type II R67 dihydrofolate reductase (DHFR) with its cofactor nicotinamide adenine dinucleotide phosphate (NADP(+)) has been studied using nuclear magnetic resonance (NMR). Doubly labeled [U-(13)C,(15)N]DHFR was obtained from Escherichia coli grown on a medium containing [U-(13)C]-D-glucose and (15)NH(4)Cl, and the 16 disordered N-terminal amino acids were removed by treatment with chymotrypsin. Backbone and side chain NMR assignments were made using triple-resonance experiments. The degeneracy of the amide (1)H and (15)N shifts of the tetrameric DHFR was preserved upon addition of NADP(+), consistent with kinetic averaging among equivalent binding sites. Analysis of the more titration-sensitive DHFR amide resonances as a function of added NADP(+) gave a K(D) of 131 +/- 50 microM, consistent with previous determinations using other methodology. We have found that the (1)H spectrum of NADP(+) in the presence of the R67 DHFR changes as a function of time. Comparison with standard samples and mass spectrometric analysis indicates a slow conversion of NADP(+) to NAD(+), i.e., an apparent NADP(+) phosphatase activity. Studies of this activity in the presence of folate and a folate analogue support the conclusion that this activity results from an interaction with the DHFR rather than a contaminating phosphatase. (1)H NMR studies of a mixture of NADP(+) and NADPH in the presence of the enzyme reveal that a ternary complex forms in which the N-4A and N-4B nuclei of the NADPH are in the proximity of the N-4 and N-5 nuclei of NADP(+). Studies using the NADP(+) analogue acetylpyridine adenosine dinucleotide phosphate (APADP(+)) demonstrated a low level of enzyme-catalyzed hydride transfer from NADPH. Analysis of DHFR backbone dynamics revealed little change upon binding of NADP(+). These additional catalytic activities and dynamic behavior are in marked contrast to those of type I DHFR.  相似文献   

19.
Summary Several sulfides and bicyclo[3.2.0]hept-2-en-6-one were enantioselectively oxidized to the corresponding sulfoxides and oxa lactones by a crude preparation of the two diketocamphane monooxygenases from Pseudomonas putida. The reactions were carried out in a membrane reactor with the use of poly(ethylene glycol)-N6-(2-aminoethyl)-NAD and coenzyme regeneration by the formate/formate dehydrogenase system.  相似文献   

20.
NADP(H) phosphatase has not been identified in eubacteria and eukaryotes. In archaea, MJ0917 of hyperthermophilic Methanococcus jannaschii is a fusion protein comprising NAD kinase and an inositol monophosphatase homologue that exhibits high NADP(H) phosphatase activity (S. Kawai, C. Fukuda, T. Mukai, and K. Murata, J. Biol. Chem. 280:39200-39207, 2005). In this study, we showed that the other archaeal inositol monophosphatases, MJ0109 of M. jannaschii and AF2372 of hyperthermophilic Archaeoglobus fulgidus, exhibit NADP(H) phosphatase activity in addition to the already-known inositol monophosphatase and fructose-1,6-bisphosphatase activities. Kinetic values for NADP+ and NADPH of MJ0109 and AF2372 were comparable to those for inositol monophosphate and fructose-1,6-bisphosphate. This implies that the physiological role of the two enzymes is that of an NADP(H) phosphatase. Further, the two enzymes showed inositol polyphosphate 1-phosphatase activity but not 3'-phosphoadenosine 5'-phosphate phosphatase activity. The inositol polyphosphate 1-phosphatase activity of archaeal inositol monophosphatase was considered to be compatible with the similar tertiary structures of inositol monophosphatase, fructose-1,6-bisphosphatase, inositol polyphosphate 1-phosphatase, and 3'-phosphoadenosine 5'-phosphate phosphatase. Based on this fact, we found that 3'-phosphoadenosine 5'-phosphate phosphatase (CysQ) of Escherichia coli exhibited NADP(H) phosphatase and fructose-1,6-bisphosphatase activities, although inositol monophosphatase (SuhB) and fructose-1,6-bisphosphatase (Fbp) of E. coli did not exhibit any NADP(H) phosphatase activity. However, the kinetic values of CysQ and the known phenotype of the cysQ mutant indicated that CysQ functions physiologically as 3'-phosphoadenosine 5'-phosphate phosphatase rather than as NADP(H) phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号