首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Activation T-DNA tagging has been used to generate a variety of tobacco cell lines selected by their ability to grow either in the absence of auxin or cytokinin in the culture media, or under selective levels of an inhibitor of polyamine biosynthesis. The majority of the cell lines studied in detail contain single T-DNA inserts genetically co-segregating with the selected phenotype. While most of the plants regenerated from the mutant cell lines appear phenotypically normal, several display phenotypes which could be inferred to result from disturbances in the content, or the metabolism, of auxins and cytokinins, or polyamines. The tagging vector is designed to allow the isolation of tagged plant genes by plasmid rescue. Confirmation that the genomic sequence responsible for the selected phenotype has indeed isolated is provided by PEG-mediated protoplast DNA uptake of rescued plasmids followed by selection for protoplast growth under the original selective conditions. Several plasmids have been rescued from the mutant lines which confer on transfected protoplasts the ability to grow either in the absence of auxin or cytokinin in the culture media, or under selective levels of an inhibitor of polyamine biosynthesis. This review describes the background to activation tagging and our progress in characterizing the genes that have been tagged in the mutant lines we have generated.  相似文献   

2.
T-DNA标签法是一种以农杆菌介导的遗传转化为基础来创造插入突变体库, 从而高通量地分离和克隆植物功能基因的方法。但由于种种原因, 水稻插入突变体库的利用效率较低。为了提高水稻插入突变体库的利用效率, 结合水稻一个双拷贝T-DNA插入突变体的发现和鉴定研究, 通过特异PCR检测、侧翼序列与目标性状的共分离分析, 在1个双插入位点均为杂合的植株的后代株系中分拆了2个插入事件, 分离出目标性状存在遗传分离且只带有1个插入事件的后代株系, 为后续的共分离检测和基因克隆研究打下了重要的基础。由此产生了对插入突变体库中的非串联多拷贝插入标签系进行研究的一些思路和方法, 提出来与同行商榷。  相似文献   

3.
4.
To develop a model system for studies of homologous recombination in plants, transgenic Nicotiana tabacum and Nicotiana plumbaginifolia lines were generated harbouring a single target T-DNA containing the negative selective codA gene encoding cytosine deaminase (CD) and the β-glucuronidase (GUS) gene. Subsequently, the target lines were transformed with a replacement-type T-DNA vector in which the CD gene and the GUS promoter had been replaced with a kanamycin-resistance gene. For both Nicotiana species kanamycin-resistant lines were selected which had lost the CD gene and the GUS activity. One tobacco line was the result of a precise gene targeting event. However, most other lines were selected due to a chromosomal deletion of the target locus. The deletion frequency of the target locus varied between target lines, and could be present in up to 20% of the calli which were grown from leaf protoplasts. T-DNA transfer was not required for induction of the deletions, indicating that the target loci were unstable. A few lines were obtained in which the target locus had been deleted partially. Sequence analysis of the junctions revealed deletion of DNA sequences between microhomologies. We conclude that T-DNAs, which are stable during plant development as well as in transmission to the offspring, may become unstable during propagation in callus tissue. The relationships between callus culture, genetic instability and the process of T-DNA integration and deletion in the plant genome are discussed.  相似文献   

5.
A collection of 4117 fertile T‐DNA lines has been generated by Agrobacterium‐mediated transformation of the diploid community standard line Bd21 of Brachypodium distachyon. The regions flanking the T‐DNA left and right borders of the first 741 transformed plants were isolated by adapter‐ligation PCR and sequenced. A total of 1005 genomic sequences (representing 44.1% of all flanking sequences retrieved) characterized 660 independent T‐DNA loci assigned to a unique location in the Brachypodium genome sequence. Seventy‐six percent of the fertile plant lines contained at least one anchored T‐DNA locus (1.17 loci per tagged line on average). Analysis of the regions flanking both borders of the T‐DNA increased the number of T‐DNA loci tagged and the number of tagged lines by approximately 50% when compared to a single border analysis. T‐DNA integration (2.4 insertions per Mb on average) was proportional to chromosome size, however, varied greatly along each chromosome with often low insertion level around centromeres. The frequency of insertion within transposable elements (5.3%) was fivefold lower than expected if random insertion would have occurred. More than half of the T‐DNAs inserted in genic regions. On average, one gene could be tagged for every second fertile plant line produced and more than one plant line out of three contained a T‐DNA insertion directly within or 500 bp around the coding sequence. Approximately, 60% of the genes tagged corresponded to expressed genes. The T‐DNA lines generated by the BrachyTAG programme are available as a community resource and have been distributed internationally since 2008 via the BrachyTAG.org web site.  相似文献   

6.
7.
Generation and flanking sequence analysis of a rice T-DNA tagged population   总被引:26,自引:0,他引:26  
Insertional mutagenesis provides a rapid way to clone a mutated gene. Transfer DNA (T-DNA) of Agrobacterium tumefaciens has been proven to be a successful tool for gene discovery in Arabidopsis and rice (Oryza sativa L. ssp. japonica). Here, we report the generation of 5,200 independent T-DNA tagged rice lines. The T-DNA insertion pattern in the rice genome was investigated, and an initial database was constructed based on T-DNA flanking sequences amplified from randomly selected T-DNA tagged rice lines using Thermal Asymmetric Interlaced PCR (TAIL-PCR). Of 361 T-DNA flanking sequences, 92 showed long T-DNA integration (T-DNA together with non-T-DNA). Another 55 sequences showed complex integration of T-DNA into the rice genome. Besides direct integration, filler sequences and microhomology (one to several nucleotides of homology) were observed between the T-DNA right border and other portions of the vector pCAMBIA1301 in transgenic rice. Preferential insertion of T-DNA into protein-coding regions of the rice genome was detected. Insertion sites mapped onto rice chromosomes were scattered in the genome. Some phenotypic mutants were observed in the T1 generation of the T-DNA tagged plants. Our mutant population will be useful for studying T-DNA integration patterns and for analyzing gene function in rice.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by D. Mackill  相似文献   

8.
9.
Mirza B 《Genetika》2005,41(12):1601-1607
In the experiment reported here, effect of the nature of T-DNA integration region on the activity of the transgenes was studied by using a colour marker gene in Arabidopsis thaliana. For this purpose a pale homozygous ch-42 mutant was transformed with the wild-type copy of the gene (CH-42) using kanamycin resistance gene as a selectable marker. Two independent lines were identified in which CH-42 transgene was inactive. The T-DNA flanking sequences were recovered from these inactive and two active lines. These flanking sequences were used to examine copy number and DNA methylation of the T-DNA insertion site in active and inactive lines. Southern blots produced by using MspI/HpaII digested genomic DNA showed signs of methylation in both inactive lines. Furthermore, in one of the inactive line the T-DNA flanking sequence probe hybridized to highly repetitive sequence. The results suggest some correlation between silencing of the transgene and methylation of its insertion region.  相似文献   

10.
Agrobacterium-mediated transformation of plants is known to result in transgenic plants with a variable number of integrated T-DNA copies [1, 2, 3, 7]. Our aim was to obtain transgenic tobacco plants containing one integrated T-DNA copy per genome. Therefore, a quick method was developed to estimate the T-DNA copy number of young transgenic plantlets within 10 weeks after transformation. Inverse polymerase chain reaction (IPCR) was used to amplify junction fragments, i.e. plant genomic DNA sequences flanking the known T-DNA sequences [5].  相似文献   

11.
In order to obtain single T-DNA copy transgenic rice, we have established a quick method to estimate the T-DNA copy number in transgenic rice using inverse PCR (IPCR). IPCR was used to amplify junction fragments, i.e. plant genomic DNA sequences flanking the known T-DNA sequences, which will help to estimate the T-DNA copy number in transgenic rice. We have analyzed 20 transgenic plants of 15 transgenic lines. Most plants (12) contain one integrated T-DNA copy per genome, 3 plants contain two and 1 plant contains 3 copies. In 4 transgenic plants no T-DNA copies could be detected using this method. The IPCR results were further tested by Southern analysis and sequence analysis.  相似文献   

12.
A pipeline has been created for the characterization of Arabidopsis thaliana mutants by generating flanking sequence tags (FSTs) and optimized for economic, high-throughput production. The GABI-Kat collection of T-DNA mutagenized A. thaliana plants was used as a source of independent transgenic lines. The pipeline included robotized extraction of genomic DNA in a 96-well format, an adapter-ligation PCR method for amplification of plant sequences adjacent to T-DNA borders, automated purification and sequencing of PCR products, and computational trimming of the resulting sequence files. Data quality was significantly improved by (i) restriction digestion of the adaptor-ligation products to reduce trivial sequences caused by co-amplification of fragments derived from the free plasmid, and (ii) the design of the adaptor primers for the second amplification step to enhance selective generation of single PCR fragments, even from lines with multiple T-DNA insertions. Gel-purification was avoided by including these steps, the number of amplification reactions per line was reduced from four to three, and the percentage of lines that yielded at least one FST was increased from 66% to 86%. More than 58,000 FSTs have been submitted to GenBank and are available at http://www.mpiz-koeln.mpg.de/GABI-Kat/.  相似文献   

13.
The stability of transgenes in the genome of transformed plants depends strongly on their correct physical integration into the host genome as well as on flanking target DNA sequences. For long-lived species like trees, however, no information is available so far concerning inactivation or loss of transgenes due to gene silencing or somatic genome rearrangement events. In this study, four independently transformed 35S-rolC transgenic hybrid aspen plants (Populus tremula L.?×?tremuloides Michx.), each harbouring one copy of the transgene, were investigated during continuous growth in the greenhouse. In one of these transgenic lines (Esch5:35S-rolC-##1) individuals frequently show phenotypic reversions, while in the remaining three lines (Esch5:35S-rolC-#3, -#5, -#16) the gene was essentially stable. Molecular analysis including PCR, Southern and Northern assays clearly showed that the transgene had been lost in the revertant tissue of the unstable line. Sequencing of T-DNA right and left borders, and flanking DNA regions, in all four transgenic aspen lines revealed no differences either in the type of flanking DNA (G-C to A-T ratio) or with respect to the presence of enhancers or MAR (matrix associated repeats)-like structures. Primers located within the left and right flanking regions in the three stable lines could be used to recover the target sites from the untransformed plants. This was not possible, however, with the unstable line, indicating that at least one flanking sequence does not derive from the plant target DNA but is of unknown origin. PCR using other primer pairs, and inverse PCR analysis, revealed an additional truncated T-DNA copy of 1050 nucleotides adjacent to the left border of the complete copy in this line. Sequencing of this truncated T-DNA revealed that it represented an inverted copy of part of the right half of the original construct. This special feature would allow the inverted repeat to pair with right border sequences of the complete copy. This would explain the frequently observed reversion resulting in transgene loss as due to intrachromosomal base-pairing leading to double-stranded loops of single-stranded DNA during mitotic cell divisions.  相似文献   

14.
Summary Plasmid rescue can provide an efficient way of cloning T-DNA-tagged genomic DNA of plants. However, rescue has often been hampered by extensive rearrangements in the cloned DNA. We have demonstrated using a transgenic line ofArabidopsis thaliana that the plant DNA flanking the T-DNA tag was heavily cytosine methylated. This methylation could be completely inhibited by growing the plants in the presence of azacytidine. Rescue of the T-DNA tag together with the flanking plant genomic DNA sequences from nontreated control plants into an modified cytosine restriction (mcr) proficient strain ofEscherichia coli resulted in rearrangements of the majority of the rescued plasmids. These rearrangements could be avoided if the methylation was inhibited in the transgenic plants by azacytidine treatment or by cloning into anmcr-deficient strain ofE. coli. The results indicate that cytosine methylation of the DNA in the transgenic plants is the main cause of the DNA rearrangements observed during plasmid rescue and suggest efficient strategies to eliminate such artifacts.  相似文献   

15.
The stability of transgenes in the genome of transformed plants depends strongly on their correct physical integration into the host genome as well as on flanking target DNA sequences. For long-lived species like trees, however, no information is available so far concerning inactivation or loss of transgenes due to gene silencing or somatic genome rearrangement events. In this study, four independently transformed 35S-rolC transgenic hybrid aspen plants (Populus tremula L. × tremuloides Michx.), each harbouring one copy of the transgene, were investigated during continuous growth in the greenhouse. In one of these transgenic lines (Esch5:35S-rolC-##1) individuals frequently show phenotypic reversions, while in the remaining three lines (Esch5:35S-rolC-#3, -#5, -#16) the gene was essentially stable. Molecular analysis including PCR, Southern and Northern assays clearly showed that the transgene had been lost in the revertant tissue of the unstable line. Sequencing of T-DNA right and left borders, and flanking DNA regions, in all four transgenic aspen lines revealed no differences either in the type of flanking DNA (G-C to A-T ratio) or with respect to the presence of enhancers or MAR (matrix associated repeats)-like structures. Primers located within the left and right flanking regions in the three stable lines could be used to recover the target sites from the untransformed plants. This was not possible, however, with the unstable line, indicating that at least one flanking sequence does not derive from the plant target DNA but is of unknown origin. PCR using other primer pairs, and inverse PCR analysis, revealed an additional truncated T-DNA copy of 1050 nucleotides adjacent to the left border of the complete copy in this line. Sequencing of this truncated T-DNA revealed that it represented an inverted copy of part of the right half of the original construct. This special feature would allow the inverted repeat to pair with right border sequences of the complete copy. This would explain the frequently observed reversion resulting in transgene loss as due to intrachromosomal base-pairing leading to double-stranded loops of single-stranded DNA during mitotic cell divisions. Received: 9 June 1998 / Accepted: 6 October 1998  相似文献   

16.
For the screening of transfer DNA (T-DNA) integration in transgenic plant material, we developed a method based on specific amplification of genomic plant DNA flanking T-DNA borders. This approach is possible because the length of the region flanking T-DNA extremity on a restriction fragment is specific to the integration locus. We have modified an adaptor ligation PCR technique developed for amplification of unknown DNA flanking known sequence. The PCR patterns obtained were specific and reproducible for different plants from a given transgenic line. Furthermore, the number of PCR products obtained could be considered a good estimation of the T-DNA copy number. When compared to Southern blot analysis, the PCR results give valuable complementary information about the complexity of the T-DNA integration pattern and also about the integrity of the T-DNA borders. We describe the applications of this approach to populations of transgenic Arabidopsis thaliana plants.  相似文献   

17.
To assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection. The average T-DNA copy number estimated by Southern DNA hybridization is 2.4, as over 50% of the insertion loci contain tandem T-DNA copies. The collection is pooled in two arrays providing 40 PCR templates, each containing DNA from either 4000 or 5000 individual plants. A rapid and sensitive PCR technique using high-quality template DNA accelerates the identification of T-DNA tagged genes without DNA hybridization. The PCR screening is performed by agarose gel electrophoresis followed by isolation and direct sequencing of DNA fragments of amplified T-DNA insert junctions. To estimate the mutation recovery rate, 39 700 lines have been screened for T-DNA tags in 154 genes yielding 87 confirmed mutations in 73 target genes. Screening the whole collection with both T-DNA border primers requires 170 PCR reactions that are expected to detect a mutation in a gene with at least twofold redundancy and an estimated probability of 77%. Using this technique, an M2 family segregating a characterized gene mutation can be identified within 4 weeks.  相似文献   

18.
To study the influence of genomic context on transgene expression, we have determined the T-DNA structure, flanking DNA sequences, and chromosomal location of four independent transgene loci in tobacco. Two of these loci were stably expressed in the homozygous condition over many generations, whereas the other two loci became unstable after several generations of homozygosity. The stably expressed loci comprised relatively simple T-DNA arrangements that were flanked on at least one side by plant DNA containing AT-rich regions that bind to nuclear matrices in vitro. Of the unstably expressed loci, one consisted of multiple incomplete T-DNA copies, and the second contained a single intact T-DNA; in both cases, however, binary vector sequences were directly contiguous to a right T-DNA border. Fluorescence in situ hybridization demonstrated that the two stably expressed inserts were present in the vicinity of telomeres. The two unstably expressed inserts occupied intercalary and paracentromeric locations, respectively. Results on the stability of transgene expression in F1 progeny obtained by intercrossing the four lines and the sensitivity of the four transgene loci to inactivation in the presence of an unlinked "trans-silencing" locus are also presented. The findings are discussed in the context of repetitive DNA sequences and the allotetraploid nature of the tobacco genome.  相似文献   

19.
In the experiment reported here, effect of the nature of T-DNA integration region on the activity of the transgenes was studied by using a color marker gene in Arabidopsis thaliana. For this purpose, a pale homozygous ch-42 mutant was transformed with the wild-type copy of the gene (CH-42) using kanamycin resistance gene as a selectable marker. Two independent lines were identified in which CH-42 transgene was inactive. The T-DNA flanking sequences were recovered from these inactive and two active lines. These flanking sequences were used to examine copy number and DNA methylation of the T-DNA insertion site in active and inactive lines. Southern blots produced by using MspI/HpaII digested genomic DNA showed signs of methylation in both inactive lines. Furthermore, in one of the inactive line, the T-DNA flanking sequence probe hybridized to highly repetitive sequence. The results suggest some correlation between silencing of the transgene and methylation of its insertion region.  相似文献   

20.
Zheng  Si-Jun  Henken  Betty  Sofiari  Eri  Jacobsen  Evert  Krens  Frans A.  Kik  Chris 《Transgenic research》2001,10(3):237-245
Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a considerable quantity of DNA is needed to obtain enough genome copies for a clear hybridization pattern. Furthermore, genomic DNA blot hybridization is a time-consuming method. Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders does not have these drawbacks and seems to be an adequate alternative to genomic DNA blot hybridization. Using AL-PCR we proved that T-DNA was integrated into the A. cepa genome of three transgenic lines transformed with Agrobacterium tumefaciens EHA105 (pCAMBIA 1301). The AL-PCR patterns obtained were specific and reproducible for a given transgenic line. The results showed that T-DNA integration took place and gave insight in the number of T-DNA copies present. Comparison of AL-PCR and previously obtained genomic DNA blot hybridization results pointed towards complex T-DNA integration patterns in some of the transgenic plants. After cloning and sequencing the AL-PCR products, the junctions between plant genomic DNA and the T-DNA insert could be analysed in great detail. For example it was shown that upon T-DNA integration a 66bp genomic sequence was deleted, and no filler DNA was inserted. Primers located within the left and right flanking genomic DNA in transgenic shallot plants were used to recover the target site of T-DNA integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号