首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary The effect of media with different ionic composition on calcium efflux from the dorsal head of semitendinosus muscles ofRana pipiens was studied. The reduction in the fractional loss of45Ca, when going from normal Ringer's solution to an ONa–OCa medium, was 60%. Withdrawal of only Na or Ca from the external medium also caused a significant drop in the fractional loss (33% and 34%, respectively). The effect of different concentrations of Ca (studied in the absence of the external Na) was also studied. It was found that a linear function could describe the relationship between the calcium-dependent calcium efflux and the external calcium concentration. These results indicate that calcium efflux from frog muscle fibers consists of three major components: one that is dependent on the presence of calcium in the external medium, one that is dependent on the presence of sodium in the external medium, and one that persists in the absence of these two cations.  相似文献   

2.
The efflux of 22Na from vesicles formed by axolemma fragments isolated from lobster nerves was studied in the presence and in the absence of drugs having well-known action on the sodium channels. The vesicles were equilibrated 12-14 h at 4 degrees C with 22Na in lobster solution containing 1 mM ouabain. Afterwards the suspension was divided: one portion was used as control and the others were treated with veratrine (0.025-0.50 mg/ml), tetrodotoxin (1-2,000 nM) in the presence of veratrine, or tetrodotoxin alone. After 3 h at 20-22 degrees C, the suspensions were diluted into nonradioactive solutions and the 22Na efflux followed by a rapid filtration technique. The results revealed that veratrine increases the efflux rate and the additional application of tetrodotoxin abolishes it, e.g., 0.50 mg of veratrine/ml increases the rate, expressed in 10(-2) min(-1), from 0.59 +/- 0.04 (mean +/- SEM; n = 13) to 0.86 +/- 0.05 (n = 13), and the addition of 100 nM tetrodotoxin diminishes it to 0.48 +/- 0.07 (n = 4). This increase and diminution are statistically significant (P less than 0.005), but this is not the case between the control and the veratrine plus tetrodotoxin values (P greater than 0.05). 50% of the diminution is produced by 11.9 +/- 2.4 nM tetrodotoxin. Tetrodotoxin alone produces a slight diminution of the 22Na efflux. Batrachotoxin (0.50 muM) has an action similar to veratrine's. These findings are considered evidence of the presence of functioning sodium channels in the isolated axolemma fragments.  相似文献   

3.
Summary Efflux of sodium from frog sartorius muscles was measured during and after exposure to Ringer's fluid made hypertonic by addition of 400mm glycerol. Effects of strophanthidin, removal of external Na, and variation of external K were determined. During exposure to glycerol-containing solutions, Na efflux increased. Upon return to Ringer's fluid, Na efflux at first increased further. After the initial increase, Na efflux gradually declined; for the first two hours the efflux of Na from treated muscles was higher than that from untreated muscles. In the second hour, the strophanthidin-sensitive fractions of Na efflux were slightly increased while the strophanthidin-insensitive fractions were slightly decreased when compared with untreated muscles. The responses of Na efflux to removal of external sodium and to varying external K were comparable in both treated and untreated muscles. This shows that, at first, the membranes which remained after glycerol treatment exhibited the normal characteristics of Na extrusion. For at least eight hours after glycerol withdrawal the Na efflux from treated muscles declined relative to that of untreated muscles. The decline was largely due to reduction in strophanthidinsensitive fractions of efflux. Six to eight hours after glycerol withdrawal the Na efflux in treated muscles was less responsive to alterations in external K and Na than it was in untreated muscles. This indicates that aged glycerol-treated sartorii lost a substantial part of their capacity to actively transport sodium.  相似文献   

4.
Black widow spider venom (BWSV) stimulates transmitter release and depletes synaptic vesicles from muscles bathed in a sodium free medium containing 1 mM EGTA. However, frog neuromuscular junctions treated with BWSV in glucosamine Ringer's and post-treated with antivenin recover normal function. This suggests that probably the permanent block of neuromuscular transmission is due to changes in permeability of the nerve ending plasma membrane to cations such as Na+. When BWSV is applied in a medium lacking divalent cations and containing 1 mM EGTA, in most of the cases no effect is observed. We found that this inhibition can be overcome in three ways: (a) by adding divalent cations to the medium; (b) by increasing the tonicity of the medium with sucrose; (c) by raising the temperature of the medium. These results suggest that the lack of divalent cations influences the membrane fluidity. Moreover, in view of the report by Yahara and Kakimoto-Sameshima (1977. Proc. Natl. Acad. Sci. U.S.A. 74:4511--4515) that hypertonic media induce capping of surface receptors in lymphocytes and thymocytes, we think that these data further support the hypothesis that BWSV stimulates release by a dual mode of action; namely, it increases the nerve ending permeability to cations and also stimulates release directly via a process of redistribution of membrane components, a process which may also inhibit vesicle recycling.  相似文献   

5.
The aim of this work was to examine the effect of a hypertonic solution (Krebs solution + 290 mM urea) on K+ and Na+ transport. The experiments were carried out on the guinea-pig taenia coli preparations using the method of Na-24 and K-24 loading and washout. The efflux curves were analysed by means of the digital computer technique. The following parameters were determined: efflux rate constant k2, influx rate constant k1, intracellular ion concentration C1 ion flux M and permeability P. Any significant difference between PNa/PK ratio in hypertonic urea and isotonic Krebs solutions was found.  相似文献   

6.
Mast cell sodium regulation is a largely unknown field. In our effort to study the mechanisms by which mast cells regulate sodium levels, we have examined the effect of amiloride and ouabain on 22Na entry in rat mast cells in isotonic and hypertonic conditions. Ouabain (0.5 mM) enhances sodium uptake by 32% in isotonic conditions. Hypertonicity increases by 400% the uptake of sodium through an amiloride (1 mM) dependent mechanism. Ouabain has no appreciable effect on the entry of 22Na in hypertonic conditions. © 1993 Wiley-Liss, Inc.  相似文献   

7.
I I Marakhova 《Tsitologiia》1984,26(10):1136-1144
The dependence of sodium efflux on intracellular sodium content with various potassium and rubidium concentration in the external medium has been studied on frog sartorious muscle. In potassium-sodium-free magnesium medium ouabain-sensitive sodium efflux was shown to be proportional to internal sodium concentration. In the presence of external ribidium (0.5--5.0 mM) the efflux concentration relations are non-linear, being closely described by assuming that 3 Na+ are transported per pump cycle. In sodium loaded muscles the efflux concentration curve was found to be dependent on the external rubidium concentration, becoming linear instead of S-shaped with the decrease in internal rubidium concentration from 5.0--2.5 to 1.0--0.5 mM. The apparent affinity constant for the internal sodium pump site increased with increasing the external rubidium (potassium) concentration. The data obtained may contribute to the kinetic evaluation of the type of Na-K pump mechanism, being more consistent with simultaneous model of pump operation.  相似文献   

8.
Net RNA degradation occurs in Tetrahymem pyrifmmis when this ciliate is suspended in a non-nutrient medium. The quantity and quality of the excretion products is at least partially under the control of the ionic content and the tonicity of the cellular environment. The excretion of ultraviolet-absorbing materials was found to be elevated by sodium ions in a medium isotonic to the culture fluid, or by a hypertonic environment. Magnesium counteracted these effects. In isotonic suspension, sodium and magnesium ions lowered orthophosphate excretion; however, sodium altered the nature of the phosphate products so that acidlabile phosphates were also excreted rather than solely orthophosphate. Similar results were obtained in a hypertonic environment with or without sodium. The degree of purine and pyrimidine loss from the cells in all conditions of suspension was reflected in the amount of RNA degraded. The ion and tonicity effects apparently reflect events which alter the stability of the RNA and the properties of the membrane system, resulting in changes in both the rate of RNA degradation and the nature of the excreted products. The rates of orthophosphate excretion appear to be affected by changes in the acid-base balance within the cell which may be governed by the cation levels. The manipulation of the ionic content and tonicity of the medium offers a convenient method for obtaining cells reduced in RNA content.  相似文献   

9.
K-Cl cotransport activity in frog erythrocytes was estimated as a Cl- -dependent component of K+ efflux from cells incubated in Cl- - or NO3- -containing medium at 20 degrees C. Decreasing the osmolality of the medium resulted in an increase in K+ efflux from the cells in a Cl- medium but not in an NO3- medium. Treatment of red cells with 5 mM NaF caused a significant decrease (approximately 50%) in K+ loss from the cells in iso- and hypotonic Cl- media but only a small decrease in K+ loss in isotonic NO3- medium. Addition of 1 mM vanadate to an isotonic Cl- medium also led to a significant reduction in K+ efflux. Similar inhibitory effects of NaF and vanadate on K+ efflux in a Cl- medium, but not in an NO3- medium were observed when the incubation temperature was decreased from 20 to 5 degrees C. Thus, under various experimental conditions, NaF and vanadate inhibited about 50% of Cl- -dependent K+ efflux from frog red cells probably due to inhibition of protein phosphatases. Cl- -dependent K+ (86Rb) influx into frog erythrocytes was nearly completely blocked (approximately 94%) by 5 mM NaF. In a NO3- medium, K+ influx was mainly mediated by the Na+,K+ pump and was unchanged in the presence of 5 mM NaF, 0.03 mM Al3+ or their combination. These data indicate that G proteins or cAMP are not involved in the regulation of Na+,K+ pump activity which is activated by catecholamines and phosphodiesterase blockers in these cells.  相似文献   

10.
The concentration dependence of the effect of veratrine in inducing depolarization and membrane potential oscillation in the frog sartorius muscle has been studied. (1) On increasing the veratrine concentration from 0.025 to 1 mM, the latency period of the development of membrane potential oscillation and depolarization is proportionally shortened. (2) On changing the veratrine concentration from 0.025 to 1 mM, the magnitude of depolarization is raised logarithmically. (3) When the veratrine concentration reaches 0.05-0.1 mM, both the amplitude and the frequency of the membrane potential oscillation increase. On rising to 1 mM, a further increase in frequency to eight-fold occurs especially in the later phase of oscillation. At this concentration range, the amplitude of oscillation inversely proportional to the concentration of veratrine. (4) On increasing the veratrine concentration above 0.1 mM, the membrane potential oscillation ceases after a temporary rise of frequency. This inhibitory effect of veratrine is, however, reversible, and oscillations appear again, despite the absence of veratrine in Ringer's solution. This also proves the persistance of the veratrine effect.  相似文献   

11.
The present study was designed to evaluate the role of protein phosphatases in regulation of sodium transport in the marsh frog erythrocytes using 22Na as a tracer. For this purpose the cells were treated with several known inhibitors of protein phosphatases. In standard isotonic medium, exposure of the cells to 10 mmol l(-1) NaF, 20 nmol l(-1) calyculin A or 0.1 mmol l(-1) cantharidin resulted in a significant (1.7-fold) increase in unidirectional ouabain-insensitive Na+ influx. The Na+ influx in frog red cells was progressively activated as the medium osmolality was increased by addition of 100, 200 or 300 mmol l(-1) sucrose to standard isotonic medium. The stimulatory effect of protein phosphatase blockers on Na+ influx was much higher in hypertonic medium containing 100 or 200 mmol l(-1) sucrose than that in isotonic medium. Stimulation of Na+ transport enhanced with increasing concentrations of calyculin A, and half-maximal activation (EC50) was obtained at 16 nmol l(-1). However, Na+ influx induced by strong hypertonic treatment (+300 mmol l(-1) sucrose) was not altered further in the presence of protein phosphatase inhibitors. The changes in Na+ influx evoked by protein phosphatase inhibitors and hypertonic treatment were associated with a rise in the intracellular Na+, but not K+, content. Enhancement in Na+ influx after addition of protein phosphatase blockers to cell suspension in isotonic or hypertonic media was almost completely inhibited by Na+/H+ exchange inhibitors, amiloride and ethyl-isopropyl-amiloride. The basal Na+ influx in frog erythrocytes in isotonic medium was relatively low (1.7 mmol/l cells/h) and not affected by 1 mmol l(-1) amiloride. Thus, the data obtained clearly indicate that Na+/H+ exchanger in the marsh frog red blood cells is under tight regulatory control, in all likelihood via protein phosphatases of types PP-1 and PP-2A.  相似文献   

12.
The dependence of electrogenic sodium pump activity on changes in the cell volume of Helix pomatia neurons with different levels of intracellular sodium ion concentration was studied. Hypertonic solutions caused hyperpolarization of the membrane and increased membrane resistance in cells with a low sodium content (low-sodium cells; LSC). The activity of the electrogenic sodium pump in hypertonic solutions was increased compared to the activity in hypotonic solutions in LSC and decreased in cells with a high sodium content (high-sodium cells; HSC). The concentration of ouabain which led to maximal inhibition of active 22Na efflux from the neurons was 10(-4) M. Lower concentrations of ouabain (10(-8) M and lower) did not inhibit the sodium pump but stimulated it. The swelling of neurons in hypotonic solutions was accompanied by an increase in the number of binding sites for ouabain, while shrinking in hypertonic solutions led to the opposite effect--a decrease in binding sites. An increase in the number of binding sites also took place in normal isotonic potassium-free solutions compared with normal Ringer's solution. Two saturable components of ouabain binding were detectable in all solutions examined. gamma-Aminobutyric acid (GABA) and acetylcholine (ACh) increased the number of ouabain binding sites on the membrane. The results suggest that there are two opposite mechanisms by which cell volume changes can modulate the pump activity. One of them depends on the intracellular sodium ion concentration and causes pump activation in hypertonic solutions in LSC and saturation in HSC, while a second mechanism mediates the activating effect of cell swelling on the sodium pump in HSC. In addition, there may be a negative feedback between the pump activity and the number of functioning pump units in the membrane.  相似文献   

13.
The membrane potential (Em) of sartorius muscle fibers was made insensitive to [K+] by equilibration in a 95 mM K+, 120 mM Na+ Ringer solution. Under these conditions a potassium-activated, ouabain-sensitive sodium efflux was observed which had characteristics similar to those seen in muscles with Em sensitive to [K+]. In addition, in the presence of 10 mM K+, these muscles were able to produce a net sodium extrusion against an electrochemical gradient which was also inhibited by 10- minus 4 M oubain. This suggests that the membrane potential does not play a major role in the potassium activation of the sodium pump in muscles.  相似文献   

14.
The effect of hypertonic solutions on the tension of isolated twitch muscle fibers of the frog has been investigated. Increased tonicity up to about 1.7 times normal (1.7 T) caused a very small, graded, maintained tension increase. Above about 1.7 T a large, transient contracture response was superimposed on the small tension. The contracture response was graded with tonicity and reached a maximum at 2.5 T of 108 ± 25 mN·mm2 a third of the maximum tetanic tension in isotonic solution. Contracture tension developed with a delay which decreased with increased tonicity. The contracture threshold was lower and the delay shorter in small fibers than in large. Contractures were obtained equally well in depolarized as in polarized fibers. They were completely suppressed by 0.1–0.5 mM tetracaine. The possible mechanism responsible for the tension-inducing effect of hypertonic solutions is discussed in terms of the close similarity between the properties of these contractures and those caused by caffeine, and it is suggested that the effect is due to a release of calcium from internal stores.  相似文献   

15.
The Control of the Membrane Potential of Muscle Fibers by the Sodium Pump   总被引:6,自引:5,他引:1  
Frog sartorius muscles were made Na-rich by immersion in K-free sulfate Ringer's solution in the cold. The muscles were then loaded with Na24 and the extracellular space cleared of radioactivity. When such Na-rich muscles were transferred to lithium sulfate Ringer's solution at 20°C, Na efflux was observed to increase with time, to reach a maximum about 15 minutes after the transfer of the muscles to Li2SO4, and then to decline. The decline in efflux from these muscles was proportional to ([Na]i)8 over a considerable range of [Na]i. The membrane potential of Na-rich muscles was about -48 mv in K-free sulfate Ringer's at 4°C but changed to -76 mv in the same solution at 20°C and to -98 mv in Li2SO4 Ringer's at 20°C. By contrast, muscles with a normal [Na]i showed a fall in membrane potential when transferred from K-free sulfate Ringer's to Li2SO4 Ringer's solution. The general conclusions from this study are (a) that Na extrusion is capable of generating an electrical potential, and (b) that increases in [Na]i lead to reversible increases in PNa of muscle fibers.  相似文献   

16.
Net sodium influx under K-free conditions was independent of the intracellular sodium ion concentration, [Na]i, and was increased by ouabain. Unidirectional sodium influx was the sum of a component independent of [Na]i and a component that increased linearly with increasing [Na]i. Net influx of sodium ions in K-free solutions varied with the external sodium ion concentration, [Na]o, and a steady-state balance of the sodium ion fluxes occurred at [Na]o = 40 mM. When solutions were K-free and contained 10-4 M ouabain, net sodium influx varied linearly with [Na]o and a steady state for the intracellular sodium was observed at [Na]o = 13 mM. The steady state observed in the presence of ouabain was the result of a pump-leak balance as the external sodium ion concentration with which the muscle sodium would be in equilibrium, under these conditions, was 0.11 mM. The rate constant for total potassium loss to K-free Ringer solution was independent of [Na]i but dependent on [Na]o. Replacing external NaCl with MgCl2 brought about reductions in net potassium efflux. Ouabain was without effect on net potassium efflux in K-free Ringer solution with [Na]o = 120 mM, but increased potassium efflux in a medium with NaCl replaced by MgCl2. When muscles were enriched with sodium ions, potassium efflux into K-free, Mg++-substituted Ringer solution fell to around 0.1 pmol/cm2·s and was increased 14-fold by addition of ouabain.  相似文献   

17.
Summary The efflux of36Cl and42K from frog's sartorius muscles equilibrated in Ringer's fluid with added KCl were measured in the absence and presence of salicylate, benzoate, and acetylsalicylate. The transmembrane potential and resistance were also measured in sartorii under similar conditions. Although the rate coefficient for loss of42K remained reasonably constant over extended experimental periods for untreated muscles, the rate coefficient for loss of36Cl fluctuated in many muscles giving rise to minima and maxima. The aromatic anions mentioned increased the efflux of chloride while having no detectable effect on the potassium efflux. The aromatic anion-stimulated chloride efflux was insensitive to alterations of external pH and was markedly reduced when nitrate replaced external chloride. No detectable changes in transmembrane potential or resistance were produced by salicylate, the most extensively studied aromatic anion. The results suggest that salicylate and the other aromatic anions stimulate an exchange diffusion mechanism for chloride.  相似文献   

18.
The electrical responses of the smooth muscle cells of the rabbit common carotid artery to extracellular stimulation were studied in isotonic and hypertonic solution (1.7 times normal tonicity) with microelectrodes. No spontaneous electrical or mechanical activity was recorded when the tissue was in either isotonic or hypertonic solution. The voltage-current relation of smooth muscle cells in the common carotid artery showed marked rectification in both isotonic and hypertonic solutions. In isotonic and hypertonic solutions mean values for membrane potentials were -44.5 and -51.5 mv, for space constants 1.13 and 1.21 mm, and for time constants 212.2 and 238.2 msec, respectively. Addition of 34.3 mM TEA to the solutions caused spontaneous action potentials in the common carotid artery. The action potentials recorded simultaneously from two microelectrodes showed good synchronization. It was concluded that there is electrical transmission between cells of this artery.  相似文献   

19.
Extracellular ATP rendered the plasma membrane of transformed mouse fibroblasts permeable to normally impermeant molecules. This permeability change was prevented by increasing the ionic strength of the isotonic medium with NaCl. Conversely, the cells exhibited increased sensitivity to ATP when the NaCl concentration was decreased below isotonicity, when the KCl concentration was increased above 5 mM while maintaining isotonicity, and when the pH of the medium was raised above 7.0. These conditions as well as the addition of ATP itself caused cell swelling. However, the effect of ATP was independent of cell volume and dependent upon the ionic strength and not the osmolarity of the medium since 1) addition of sucrose to isotonic medium did not prevent permeabilization although media made hypertonic with either sucrose or NaCl caused a decrease in cell volume; and 2) addition of sucrose or NaCl to hypotonic media caused a decrease in cell volume, but only NaCl addition decreased the response to ATP. Conditions that have been shown to inhibit plasma membrane proteins that play a reciprocal role in cell volume regulation had reciprocal effects on the permeabilization process, even though the effect of ATP was independent of cell volume. For example, inhibition of the Na+,K+-ATPase by ouabain increased sensitivity of cells to ATP while conditions which inhibit Na+,K+,Cl- -cotransporter activity, such as treatment of the cells with the diuretics furosemide or bumetanide or replacement of sodium chloride in the medium with sodium nitrate or thiocyanate, inhibited permeabilization. The furosemide concentration that inhibited permeabilization was greater than the concentration that inhibited Na+,K+,Cl- -cotransporter-mediated 86Rb+ (K+) uptake, suggesting that the effect of furosemide on the permeabilization process may not be specific for the Na+,K+,Cl- -cotransporter.  相似文献   

20.
Alkalophilic Bacillus sp. strain C-59 could grow well on an alkaline medium containing K2CO3, as well as Na2CO3, but did not grow on K+-depleted medium. Right-side-out membrane vesicles, energized in the absence of Na+, however, could not take up [14C]methylamine actively, while vesicles equilibrated with 10 mM NaCl actively took up [14C]methylamine. The uptake of [14C]serine was also stimulated by the addition of Na+, and the imposition of a sodium gradient caused transient uptake. These results indicated that an Na+/H+ antiporter was involved in pH homeostasis and generation of an electrochemical sodium gradient in strain C-59 even though a growth requirement for Na+ was not evident. The efflux of 22Na+ from 22Na+-loaded vesicles was more rapid at pH 9.5 than at pH 7 in the presence of an electron donor. On the other hand, vesicles at pH 7 showed more rapid efflux than at pH 9.5 when the antiporter was energized by a valinomycin-mediated K+ diffusion potential (inside negative).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号