首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuronal Tau protein is involved in stabilizing microtubules but is also the major component of the paired helical filaments (PHFs), the intracellular aggregates that characterize Alzheimer's disease (AD) in neurons. In vitro, Tau can be induced to form AD-like aggregates by adding polyanions such as heparin. While previous studies have identified the microtubule binding repeats (MTBRs) as the major player in Tau aggregation, the fact that the full-length protein does not aggregate by itself indicates the presence of inhibitory factors. Charge and conformational changes are of uttermost importance near the second (R2) and third (R3) MTBR that are thought to be involved directly in the nucleation of the aggregation. Recently, the positively charged regions flanking the MTBR were proposed to inhibit PHF assembly, where hyperphosphorylation neutralizes these basic inhibitory domains, enabling Tau-Tau interactions. Here we present results of an NMR study on the interaction between intact full-length Tau and small heparin fragments of well-defined size, under conditions where no aggregation occurs. Our findings reveal (i) micromolar affinity of heparin to residues in R2 and R3, (ii) two zones of strong interaction within the positively charged inhibitory regions flanking the MTBR, and (iii) another interaction site upstream of the two inserts encoded by exons 2 and 3. Three-dimensional heteronuclear NMR experiments demonstrate that the interaction with heparin induces beta-strand structure in several regions of Tau that might act as nucleation sites for its aggregation but indicate as well alpha-helical structure in regions outside the core of PHF. In the PHF, the residues outside of the core maintain sufficient mobility for NMR detection and recover their unbound chemical shift values after an overnight incubation at 37 degrees C with heparin. Heparin thus becomes integrated into the rigid core region of the PHF, probably providing the charge compensation for the lysine-rich stretches that form upon the in-register, parallel stacking of the repeat regions.  相似文献   

2.
We have previously shown that microtubule-associated protein 2 (MAP2) and Tau, two major microtubule-associated proteins, interact with actin differently as measured by low-shear viscosity and that their activities are modified by phosphorylation (Nishida, E., Kotani, S., Kuwaki, T., and Sakai, H. (1982 in Biological Functions of Microtubules and Related Structures (Sakai, H., Mohri, H., and Borisy, G. G., eds) pp. 297-309, Academic Press, Japan). In the present study we further examined their interaction using turbidimetry, electron microscopy, low- and high-shear viscometry. MAP2 increased the low-shear viscosity of actin filament but had weaker effect on high-shear viscosity and turbidity of actin filaments. In contrast, Tau reduced high-shear viscosity of actin filaments and enhanced the turbidity which were due to formation of actin filament bundles as shown by electron microscopy. We conclude that MAP2 is a gelation factor, while Tau is a bundling factor. A well-known Ca2+-dependent regulatory protein, calmodulin, inhibited both MAP2-actin and Tau-actin interaction in a Ca2+-dependent manner. The calmodulin-dependent inhibition was canceled by higher concentrations of MAP2 or Tau, and calmodulin had no effect on the viscosity of actin filament alone, indicating that this inhibition is based on the stoichiometric interaction of calmodulin with MAP2 or Tau.  相似文献   

3.
BackgroundAggregation of tau into paired helical filament (PHF) is a hallmark of Alzheimer's disease (AD), and Cys-mediated disulfide bond formation plays a vital role in tau fibrillation. While intermolecular disulfide bond between Cys residues in microtubule-binding repeat (MTBR) region facilitates tau aggregation, intramolecular disulfide bond attenuates the same, though the molecular basis for such phenomenon remains obscure. Thus intramolecular disulfide-bonded tau monomer might be an excellent model to understand the unique features of aggregation-resistant tau conformer.MethodsWe synthesized the Cys cross-linked tau40 monomer by oxidation and characterized the altered conformational dynamics in the molecule by Hydrogen-deuterium exchange, limited proteolysis and fluorescence quenching.ResultsDeuterium exchange study showed that rigidity was imparted in the core PHF region of oxidized tau40 in MTBR segment, consisting of the fundamental PHF6 motif. Conformational rigidity was prominent in C-terminal tail region also. Limited proteolysis supported reduced accessibility of MTBR region in the molecule.ConclusionsPHF formation of oxidized tau40 might be attenuated either by induction of intramolecular H-bonding between the regions of high β-structure propensity in second and third MTBR (R2, R3), thus preventing intermolecular interaction between them, or by imparted rigidity in R2–R3, preventing the formation of extended β-structure preceding fibrillation. Data indicated plausible effect of conformational adaptation on the nucleation process of oxidized tau40 assembly.General significanceOur findings unravel the essential molecular features of aggregation-resistant tau conformer. Therapeutics stabilizing such conformers in vivo might be of high benefit in arresting tau assembly during AD and other tauopathies.  相似文献   

4.
We previously reported that an isoform of microtubule-associated protein 4 (MAP4) is localized to the distal area of developing neurites, where microtubules are relatively scarce, raising the possibility that MAP4 interacts with another major cytoskeletal component, actin filaments. In the present study, we examined the in vitro interaction between MAP4 and actin filaments, using bacterially expressed MAP4 and its truncated fragments. Sedimentation assays revealed that MAP4 and its microtubule-binding domain fragments bind to actin filaments under physiological conditions. The apparent dissociation constant and the binding stoichiometry of the fragments to actin were about 0.1 μm and 1 : 3 (MAP4/actin), respectively. Molecular dissection studies revealed that the actin-binding site on MAP4 is situated at the C-terminal part of the proline-rich region, where the microtubule-binding site is also located. Electron microscopy revealed that the MAP4-bound actin filaments become straighter and longer and that the number of actin bundles increases with greater concentrations of added MAP4 fragment, indicating that MAP4 binding alters the properties of the actin filaments. A multiple sequence alignment of the proline-rich regions of MAP4 and tau revealed two putative actin-binding consensus sequences.  相似文献   

5.
The abnormal aggregation of the microtubule-associated protein Tau into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer disease (AD). Tau in solution behaves as a natively unfolded or intrinsically disordered protein while its aggregation is based on the partial structural transition from random coil to beta-structure. Our aim is to understand in more detail the unfolded nature of Tau, to investigate the aggregation of Tau under different conditions and the molecular interactions of Tau in filaments. We show that soluble Tau remains natively unfolded even when its net charge is minimized, in contrast to other unfolded proteins. The CD signature of the random-coil character of Tau shows no major change over wide variations in charge (pH), ionic strength, solvent polarity, and denaturation. Thus there is no indication of a hydrophobicity-driven collapse, neither in the microtubule-binding repeat domain constructs nor in full-length Tau. This argues that the lack of hydrophobic residues but not the net charge accounts for unfolded nature of soluble Tau. The aggregation of the Tau repeat domain (that forms the core of PHFs) in the presence of nucleating polyanionic cofactors (heparin) is efficient in a range of buffers and pH values between approximately 5 and 10 but breaks down beyond that range, presumably because the pattern of charged interactions disappears. Similarly, elevated ionic strength attenuates aggregation, and the temperature dependence is bell-shaped with an optimum around 50 degrees C. Reporter dyes ThS and ANS record the aggregation process but sense different states (cross-beta-structure vs hydrophobic pockets) with different kinetics. Preformed PHFs are surprisingly labile and can be disrupted by denaturants at rather low concentration ( approximately 1.0 M GdnHCl), much less than required to denature globular proteins. Partial disaggregation of Tau filaments at extreme pH values monitored by CD and EM indicate the importance of salt bridges in filament formation. In contrast, Tau filaments are remarkably resistant to high temperature and high ionic strength. Overall, the stability of PHFs appears to depend mainly on directed salt bridges with contributions from hydrophobic interactions as well, consistent with a recent structural model of the PHF core derived from solid state NMR (Andronesi, O. C., von Bergen, M., Biernat, J., Seidel, K., Griesinger, C., Mandelkow, E., and Baldus, M. (2008) Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy.  相似文献   

6.
Eliezer D  Barré P  Kobaslija M  Chan D  Li X  Heend L 《Biochemistry》2005,44(3):1026-1036
The microtubule-associated protein tau is found aggregated into paired helical filaments in the intraneuronal neurofibrillary tangle deposits of victims of Alzheimer's disease (AD) and other related dementias. Tau contains a repeat domain consisting of three or four 31-32-residue imperfect repeats that forms the core of tau filaments and is capable of self-assembling into filaments in vitro. We have used high-resolution NMR spectroscopy to characterize the structural properties of the three-repeat domain of tau at the level of individual residues. We find that three distinct regions of the polypeptide corresponding to previously mapped microtubule interaction sites exhibit a preference for helical conformations, suggesting that these sites adopt a helical structure when bound to microtubules. In addition, we directly observe a marked preference for extended or beta-strand-like conformations in a stretch of residues between two of the helical regions, which corresponds closely to a region previously implicated as an early site of beta-strand structure formation and intermolecular interactions leading to paired helical filament (PHF) formation. This observation supports the idea that this region of the protein plays a crucial role in the formation of tau aggregates. We further show that disulfide-bond-mediated dimer formation does not affect and is not responsible for the observed structural preferences of the protein. Our results provide the first high-resolution view of the structural properties of the protein tau, are consistent with an important role for beta structure in PHF formation, and may also help explain recent reports that tau filaments contain helical structure.  相似文献   

7.
H Ksiezak-Reding  S H Yen 《Neuron》1991,6(5):717-728
Highly purified and SDS-soluble paired helical filaments (PHFs) were immunogold labeled and immunoblotted with antibodies to tau: Tau 14 (N-terminal half), AH-1 (microtubule-binding domain), and Tau 46 (C-terminal end). The main component of PHFs was modified tau of 68, 64, and 60 kd, also called A68 or PHF-tau. Trypsin digestion reduced the maximum width of PHFs by 10%-20%, increased aggregation of filaments, and abolished the binding of Tau 14, but had no effect on the binding of AH-1. The smallest tau-reactive tryptic fragments were 13 and 7-8 kd, positive with AH-1, and negative with Tau 46. Our results and the model of Crowther and Wischik suggest that by self-association and anti-parallel arrangement of the microtubule-binding domains, PHF-tau forms the backbone of PHFs.  相似文献   

8.
The MAP2/Tau family of microtubule-associated proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
Microtubule-associated proteins (MAPs) of the MAP2/Tau family include the vertebrate proteins MAP2, MAP4, and Tau and homologs in other animals. All three vertebrate members of the family have alternative splice forms; all isoforms share a conserved carboxy-terminal domain containing microtubule-binding repeats, and an amino-terminal projection domain of varying size. MAP2 and Tau are found in neurons, whereas MAP4 is present in many other tissues but is generally absent from neurons. Members of the family are best known for their microtubule-stabilizing activity and for proposed roles regulating microtubule networks in the axons and dendrites of neurons. Contrary to this simple, traditional view, accumulating evidence suggests a much broader range of functions, such as binding to filamentous (F) actin, recruitment of signaling proteins, and regulation of microtubule-mediated transport. Tau is also implicated in Alzheimer's disease and other dementias. The ability of MAP2 to interact with both microtubules and F-actin might be critical for neuromorphogenic processes, such as neurite initiation, during which networks of microtubules and F-actin are reorganized in a coordinated manner. Various upstream kinases and interacting proteins have been identified that regulate the microtubule-stabilizing activity of MAP2/Tau family proteins.  相似文献   

9.
The microtubule-associated protein Tau has its normal function impaired when undergoing post-translational modifications. In this work, molecular modelling techniques were used to infer the effects of acetylation and phosphorylation in Tau's overall conformation, electrostatics, and interactions, but mostly in Tau's ability to bind microtubules. Reported harmful Lys sites were mutated by its acetylated form, generating eight different acetylated Tau (aTau) analogues. Similarly, phosphorylation sites found in normal brains and in Alzheimer’s lesioned brains were considered to design phosphorylated Tau (pTau) analogues. All these designed variants were evaluated in intracellular fluid and near a microtubule (MT) model. Our in silico findings demonstrated that the electrostatic changes, due to the absence of positive Lys’ charges in acetylation cases, or the increasingly negative charge in the phosphorylated forms, hamper the association to the MT tubulins in most cases. Post-translational modifications also pose very distinct conformations to the ones described for native Tau, which hinders the microtubule-binding region (MTBR) and turns difficult the expected binding. Our study elucidates important molecular processes behind Tau abnormal function which can inspire novel therapeutics to address Alzheimer’s disease.  相似文献   

10.
11.
Phosphorylation of microtubule-associated protein 2 (MAP 2) by Ca2+-, calmodulin-dependent protein kinase II (protein kinase II) inhibited the actin filament cross-linking activity of MAP 2. This inhibition required the presence of ATP, Mg2+, Ca2+ and calmodulin. The minimal concentration of MAP 2 required for gel formation of actin filaments was increased with increasing amounts of phosphate incorporated into MAP 2, and the phosphorylated MAP 2, into which 10.3 mol of phosphate/mol of protein had been incorporated, did not cause actin filaments to gel under the experimental conditions used. The phosphorylation of MAP 2 by Ca2+-, phospholipid-dependent protein kinase (protein kinase C) and cAMP-dependent protein kinase also inhibited the actin filament cross-linking activity of MAP 2. The extent and rate of phosphorylation of MAP 2 by protein kinase II were higher than those of the phosphorylation by protein kinase C and cAMP-dependent protein kinase. The interaction of actin filaments with MAP 2 was inhibited more by the actions of protein kinase II and protein kinase C than by cAMP-dependent protein kinase. The actin filament cross-linking activity of MAP 2 phosphorylated either by protein kinase II, cAMP-dependent protein kinase or protein kinase C was retrieved when phosphorylated MAP 2 was treated by protein phosphatase. These results indicate that the interaction of actin filaments with MAP 2 is regulated by the phosphorylation-dephosphorylation of MAP 2.  相似文献   

12.
Tau is a neuronal protein that stabilizes the microtubule (MT) network, but it also forms filaments associated with Alzheimer''s disease. Understanding Tau–MT and Tau–Tau interactions would help to establish Tau function in health and disease. For many years, literature reports on Tau–MT binding behavior and affinity have remained surprisingly contradictory (e.g., 10-fold variation in Tau–MT affinity). Tau–Tau interactions have also been investigated, but whether MTs might affect Tau filament formation is unknown. We have addressed these issues through binding assays and microscopy. We assessed Tau–MT interactions via cosedimentation and found that the measured affinity of Tau varies greatly, depending on the experimental design and the protein concentrations used. To investigate this dependence, we used fluorescence microscopy to examine Tau–MT binding. Strikingly, we found that Taxol-stabilized MTs promote Tau filament formation without characterized Tau-filament inducers. We propose that these novel Tau filaments account for the incongruence in Tau–MT affinity measurements. Moreover, electron microscopy reveals that these filaments appear similar to the heparin-induced Alzheimer''s model. These observations suggest that the MT-induced Tau filaments provide a new model for Alzheimer''s studies and that MTs might play a role in the formation of Alzheimer''s-associated neurofibrillary tangles.  相似文献   

13.
Phosphorylation of the neuronal Tau protein is implicated in both the regulation of its physiological function of microtubule stabilization and its pathological propensity to aggregate into the fibers that characterize Alzheimer's diseased neurons. However, how specific phosphorylation events influence both aspects of Tau biology remains largely unknown. In this study, we address the structural impact of phosphorylation of the Tau protein by Nuclear Magnetic Resonance (NMR) spectroscopy on a functional fragment of Tau (Tau[Ser208–Ser324] = TauF4). TauF4 was phosphorylated by the proline‐directed CDK2/CycA3 kinase on Thr231 (generating the AT180 epitope), Ser235, and equally on Thr212 and Thr217 in the Proline‐rich region (Tau[Ser208‐Gln244] or PRR). These modifications strongly decrease the capacity of TauF4 to polymerize tubulin into microtubules. While all the NMR parameters are consistent with a globally disordered Tau protein fragment, local clusters of structuration can be defined. The most salient result of our NMR analysis is that phosphorylation in the PRR stabilizes a short α‐helix that runs from pSer235 till the very beginning of the microtubule‐binding region (Tau[Thr245‐Ser324] or MTBR of TauF4). Phosphorylation of Thr231/Ser235 creates a N‐cap with helix stabilizing role while phosphorylation of Thr212/Thr217 does not induce modification of the local transient secondary structure, showing that the stabilizing effect is sequence specific. Using paramagnetic relaxation experiments, we additionally show a transient interaction between the PRR and the MTBR, observed in both TauF4 and phospho‐TauF4. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Physical properties, including amyloid morphology, FTIR and CD spectra, enhancement of Congo red absorbance, polymerization rate, critical monomer concentration, free energy of stabilization, hydrophobicity, and the partition coefficient between soluble and amyloid states, were measured for the tau-related peptide Ac-VQIVYK amide (AcPHF6) and its single site mutants Ac-VQIVXK amide (X not equal Cys). Transmission electron microscopy showed that 15 out of the 19 peptides formed amyloid in buffer, with morphologies ranging from straight and twisted filaments to sheets and rolled sheets. Using principal component analysis (PCA), measured properties were treated in a comprehensive manner, and scores along the most significant principal components were used to define individual amino acid amyloidogenic propensities. Quantitative structure-activity modeling (QSAM) showed that residues with greater size and hydrophobicity made the largest contributions to the propensity of peptides to form amyloid. Using individual amino acid propensities, sequences within tau with high amyloid-forming potential were estimated and found to include 226VAVVR230 in the proline-rich region, 275VQIINK280 (PHF6) and 306VQIVYK311 (PHF6) within the microtubule binding region, and 392IVYK395 in the C-tail region of the protein. The results suggest that regions outside the microtubule-binding region may play important roles in tau aggregation kinetics or paired helical filament structure.  相似文献   

15.
To investigate the importance of the seventh residue of the second and third repeat fragments (R2 and R3 peptides) of the microtubule-binding domain (MBD) for tau filamentous assembly, the residues Lys and Pro were substituted (R2-K7P and R3-P7K). The filament formations of the R2 and R3 peptides were almost lost due to their substitutions despite their overall conformational similarities. The NOE analyses showed the importance of the conformational flexibility for the R2 peptide and the coupled extended and helical conformations for the R3 peptide in their limited N-terminal regions around their seventh residues. The result shows that the filament formation of MBD is initiated from a short fragment region containing the minimal conformational or functional motif.  相似文献   

16.
The motor protein, non-muscle myosin II (NMII), must undergo dynamic oligomerization into filaments to participate in cellular processes such as cell migration and cytokinesis. A small non-helical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. In this study, we investigated the role of the tailpiece in NMII-C self-assembly. We show that the tailpiece is natively unfolded, as seen by circular dichroism and NMR experiments, and is divided into two regions of opposite charge. The positively charged region (Tailpiece1946–1967) starts at residue 1946 and is extended by seven amino acids at its N terminus from the traditional coiled-coil ending proline (Tailpiece1953–1967). Pull-down and sedimentation assays showed that the positive Tailpiece1946–1967 binds to assembly incompetent NMII-C fragments inducing filament assembly. The negative region, residues 1968–2000, is responsible for NMII paracrystal morphology as determined by chimeras in which the negative region was swapped between the NMII isoforms. Mixing the positive and negative peptides had no effect on the ability of the positive peptide to bind and induce filament assembly. This study provides molecular insight into the role of the structurally disordered tailpiece of NMII-C in shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.  相似文献   

17.
A heat-stable microtubule-associated protein (MAP) with apparent molecular weight of 190,000 is a major non-neural MAP which distributes ubiquitously among bovine tissues (termed here MAP-U). Previously we reported that microtubule-binding chymotryptic fragments of MAP-U and tau contain a common assembly-promoting (AP) sequence of 22 amino acid residues (Aizawa, H., Kawasaki, H., Murofushi, H., Kotani, S., Suzuki, K., and Sakai, H. (1989) J. Biol. Chem. 264, 5885-5890). We isolated cDNA clones for MAP-U containing the whole coding sequence. Northern blot analysis revealed that a major species of MAP-U mRNA is 5 kilobases in length and is expressed ubiquitously among bovine tissues. Nucleotide sequence analysis revealed the complete amino acid sequence of MAP-U which consists of 1,072 amino acid residues. Analysis of the deduced amino acid sequence of MAP-U indicated that this molecule is clearly divided into two domains in terms of electrostatic charge distribution: an amino-terminal acidic domain (residues 1-640) and a carboxyl-terminal basic domain (residues 641-1072). The amino-terminal domain of MAP-U shows no significant sequence homology with other known protein sequences including neural MAPs, tau, and MAP-2. The amino-terminal domain of MAP-U contains unique 18 1/2 repeats of 14-amino acid motif which have not been observed in other MAPs. The carboxyl-terminal domain of MAP-U is further divided into three regions: a Pro-rich region (residues 641-880), an AP sequence region (residues 881-1003), and a short hydrophobic tail (residues 1004-1072). The Pro-rich region is mainly composed of five species of amino acid residues, Pro, Ala, Lys, Ser, and Thr. The AP sequence region contains four tandem repeats of AP sequences, and thus, this region is considered to play a leading role in the interaction of MAP-U with microtubules.  相似文献   

18.
Mutations causing neurodegenerative tauopathies   总被引:13,自引:0,他引:13  
Tau is the major component of the intracellular filamentous deposits that define a number of neurodegenerative diseases. They include the largely sporadic Alzheimer's disease (AD), progressive supranuclear palsy, corticobasal degeneration, Pick's disease and argyrophilic grain disease, as well as the inherited frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). For a long time, it was unclear whether the dysfunction of tau protein follows disease or whether disease follows tau dysfunction. This was resolved when mutations in Tau were found to cause FTDP-17. Currently, 32 different mutations have been identified in over 100 families. About half of the known mutations have their primary effect at the protein level. They reduce the ability of tau protein to interact with microtubules and increase its propensity to assemble into abnormal filaments. The other mutations have their primary effect at the RNA level and perturb the normal ratio of three-repeat to four-repeat tau isoforms. Where studied, this resulted in a relative overproduction of tau protein with four microtubule-binding domains in the brain. Individual Tau mutations give rise to diseases that resemble progressive supranuclear palsy, corticobasal degeneration or Pick's disease. Moreover, the H1 haplotype of Tau has been identified as a significant risk factor for progressive supranuclear palsy and corticobasal degeneration. At a practical level, the new work is leading to the production of experimental animal models that reproduce the essential molecular and cellular features of the human tauopathies, including the formation of abundant filaments made of hyperphosphorylated tau protein and nerve cell degeneration.  相似文献   

19.
We have studied the microtubule-associated protein MAP2 from porcine brain and its subfragments by limited proteolysis, antibody labeling, and electron microscopy. Two major chymotryptic fragments start at lys 1528 and arg 1664, generating microtubule-binding fragments of Mr 36 kDa (303 residues, analogous to the "assembly domain" of Vallee, 1980) and 18 kDa (167 residues). These fragments can be labeled with the antibody 2-4 which recognizes the last internal repeat of MAP2 (Dingus et al., 1991). The epitope of another monoclonal antibody, AP18 (Binder et al., 1986), was mapped to the first 151 residues of MAP2. The interaction with AP18 is phosphorylation dependent; dephosphorylated MAP2 is not recognized. Intact MAP2 forms rod-like particles of 97 nm mean length, similar to Gottlieb and Murphy's (1985) observations. Both antibodies bind near an end of the rod, suggesting that the sequence and the structure are approximately colinear. There is a pronounced tendency for MAP2 to form dimers whose components are nearly in register but of opposite polarity. MAP2 can also fold in a hairpin-like fashion, generating 50-nm rods, and it can self-associate into oligomers and fibers. The 36-kDa microtubule-binding fragment also has a rod-like shape; its mean length is 49 nm, half of the intact molecule, even though the fragment contains only one-sixth of the mass. The antibody 2-4 decorates one end of the rod, similar to the intact protein. The fragment also forms antiparallel dimers, but its tendency for higher self-assembly forms is much lower than with intact MAP2.  相似文献   

20.
It has previously been demonstrated that microtubule-associated protein 2 (MAP2) is a good substrate for the purified protein kinase C [Tsuyama, S., Bramblett, G. T., Huang, K.-P. & Flavin, M. (1986) J. Biol. Chem. 261, 4110-4116; Akiyama, T., Nishida, E., Ishida, J., Saji, N., Ogawara, H., Hoshi, M., Miyata, Y. & Sakai, H. (1986) J. Biol. Chem. 261, 15648-15651]. We have shown here that phosphorylation of MAP2, catalyzed by protein kinase C, reduces the ability to induce tubulin polymerization. MAP2 is divided into two domains by digestion with alpha-chymotrypsin; the microtubule-binding and the non-binding (projection) domains. The limited chymotryptic digestion following phosphorylation of MAP2 by protein kinase C has shown that both the domains of MAP2 were phosphorylated by protein kinase C, 50-60% of the incorporated phosphates being detected in the microtubule-binding domain. Polypeptide fragments, containing the microtubule-binding domain of MAP2, were purified by DEAE-cellulose column chromatography after chymotryptic digestion of MAP2. The purified microtubule-binding fragments were competent to polymerize tubulin, and served as good substrates for protein kinase C. The phosphorylation of the microtubule-binding fragments by protein kinase C reduced their ability to induce tubulin polymerization. These results suggest that the ability of MAP2 to induce tubulin polymerization is inhibited by phosphorylation of the microtubule-binding domain catalyzed by protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号