首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study describes the use of a biofeedback method for the noninvasive study of baroreflex mechanisms. Five previously untrained healthy male participants learned to control oscillations in heart rate using biofeedback training to modify their heart rate variability at specific frequencies. They were instructed to match computer-generated sinusoidal oscillations with oscillations in heart rate at seven frequencies within the range of 0.01–0.14 Hz. All participants successfully produced high-amplitude target-frequency oscillations in both heart rate and blood pressure. Stable and predictable transfer functions between heart rate and blood pressure were obtained in all participants. The highest oscillation amplitudes were produced in the range of 0.055–0.11 Hz for heart rate and 0.02–0.055 Hz for blood pressure. Transfer functions were calculated among sinusoidal oscillations in the target stimuli, heart rate, blood pressure, and respiration for frequencies at which subjects received training. High and low target-frequency oscillation amplitudes at specific frequencies could be explained by resonance among various oscillatory processes in the cardiovascular system. The exact resonant frequencies differed among individuals. Changes in heart rate oscillations could not be completely explained by changes in breathing. The biofeedback method also allowed us to quantity characteristics of inertia, delay, and speed sensitivity in baroreflex system. We discuss the implications of these findings for using heart rate variability biofeedback as an aid in diagnosing various autonomic and cardiovascular system disorders and as a method for treating these disorders.  相似文献   

2.
Frequency estimates of the heart rate variability (HRV) spectrum influenced by external periodic stimuli were studied in healthy subjects and patients with coronary heart disease (CHD). Sensory stimulation by periodic eye opening at a rate of 15, 10, 8, 6, or 5 times per minute, as well as spontaneous and controlled breathing at a rate of 15, 10, 8, 6, or 5 times per minute, was used. It was found that the spectral response to external periodic oscillations was determined by a frequency-dependent phenomenon, the maximal amplitude of heart rate variations being observed in the case of external stimuli at a frequency of 0.1 Hz. A resonance frequency in the 0.1-Hz range may be suggested to exist in the cardiovascular controls. Significant differences in the HRV frequency characteristics between CHD patients and healthy subjects were shown. CHD patients had a characteristic decline in HRV responses to external oscillations; the power of these responses did not depend on the frequency of external stimuli.  相似文献   

3.
Heart rate and blood pressure, as well as other physiological systems, among healthy people, show a complex pattern of variability, characterized by multifrequency oscillations. There is evidence that these oscillations reflect the activity of homeostatic reflexes. Biofeedback training to increase the amplitude of respiratory sinus arrhythmia (RSA) maximally increases the amplitude of heart rate oscillations only at approximately 0.1 Hz. To perform this task people slow their breathing to this rate to a point where resonance occurs between respiratory-induced oscillations (RSA) and oscillations that naturally occur at this rate, probably triggered in part by baroreflex activity. We hypothesize that this type of biofeedback exercises the baroreflexes, and renders them more efficient. A manual is presented for carrying out this method. Supporting data are provided in Lehrer, Smetankin, and Potapova (2000) in this issue.  相似文献   

4.
The effect of deep breathing controlled in both rate and amplitude on the heart rate variability (HRV) and respiration-dependent blood flow oscillations was studied in the forearm and finger-pad skin of healthy 18- to 25-year-old volunteers. In order to reveal the effects of the divisions of the autonomic nervous system on the amplitudes of respiratory sinus arrhythmia (RSA) and skin blood flow oscillations, we studied the indices of the cardiovascular system in two groups of subjects with respectively lower and higher values of the sympatho-vagal balance. This index was calculated as a ratio of low frequency and high frequency HRV spectral power (LF/HF) under the conditions of spontaneous breathing. It was found that, in subjects with a predominant parasympathetic tone, the amplitudes of RSA and the rate of blood flow in the finger-pad skin were higher compared to subjects with a predominant sympathetic tone during respiration with the frequency lower than 4 cycle/min. In the forearm skin, where sympathetic innervation is weaker compared to the finger-pad skin, there were no significant differences in respiration-dependent oscillations of the rate of blood flow in two groups of subjects.  相似文献   

5.
Fibromyalgia (FM) is a non-inflammatory rheumatologic disorder characterized by musculoskeletal pain, fatigue, depression, cognitive dysfunction and sleep disturbance. Research suggests that autonomic dysfunction may account for some of the symptomatology of FM. An open label trial of biofeedback training was conducted to manipulate suboptimal heart rate variability (HRV), a key marker of autonomic dysfunction. Methods: Twelve women ages 18–60 with FM completed 10 weekly sessions of HRV biofeedback. They were taught to breathe at their resonant frequency (RF) and asked to practice twice daily. At sessions 1, 10 and 3-month follow-up, physiological and questionnaire data were collected. Results: There were clinically significant decreases in depression and pain and improvement in functioning from Session 1 to a 3-month follow-up. For depression, the improvement occurred by Session 10. HRV and blood pressure variability (BPV) increased during biofeedback tasks. HRV increased from Sessions 1–10, while BPV decreased from Session 1 to the 3 month follow-up. Conclusions: These data suggest that HRV biofeedback may be a useful treatment for FM, perhaps mediated by autonomic changes. While HRV effects were immediate, blood pressure, baroreflex, and therapeutic effects were delayed. This is consistent with data on the relationship among stress, HPA axis activity, and brain function.  相似文献   

6.
We studied biophysical features of interaction between 0.1 Hz oscillations in heart rate variability (HRV) and distal blood flow (DBF) variability in healthy subjects and patients after acute myocardial infarction (MI). 125 patients after acute MI (72 male and 53 female) aged between 30 and 83 years and 33 healthy subjects (23 male and 10 female) aged between 20 and 46 years were included in the study. The duration of prospective study of MI patients was one year. We estimated the delay in coupling between 0.1 Hz oscillations in H RV and DBF variability. It is found out that in healthy subjects the delay in coupling from heart rate to DBF is less than delay in coupling from DBF to heart rate. Acute MI results mainly in disruption of coupling from heart rate to DBF. This coupling is partially restored in one year after acute MI, but the delay in coupling remains significantly smaller than in healthy subjects. The features of coupling from DBF to heart rate are restored in MI patients within three weeks after infarction. After this period the delay in this coupling in MI patients is approximately the same as it is in healthy subjects.  相似文献   

7.
Cheyne-Stokes respiration (CSR) is associated with increased mortality among patients with heart failure. However, the specific link between CSR and mortality remains unclear. One possibility is that CSR results in excitation of the sympathetic nervous system. This review relates evidence that CSR exerts acute effects on the autonomic nervous system during sleep, and thereby influences a number of cardiovascular phenomena, including heart rate, blood pressure, atrioventricular conduction, and ventricular ectopy. In patients in sinus rhythm, heart rate and blood pressure oscillate during CSR in association with respiratory oscillations, such that both peak heart rate and blood pressure occur during the hyperpneic phase. Inhalation of CO2 abolishes both CSR and the associated oscillations in heart rate and blood pressure. In contrast, O2 inhalation sufficient to eliminate hypoxic dips has no significant effect on CSR, heart rate, or blood pressure. In patients with atrial fibrillation, ventricular rate oscillates in association with CSR despite the absence of within-breath respiratory arrhythmia. The comparison of RR intervals between the apneic and hyperpneic phases of CSR indicates that this breathing disorder exerts its effect on ventricular rate by inducing cyclical changes in atrioventricular node conduction properties. In patients with frequent ventricular premature beats (VPBs), VPBs occur more frequently during the hyperpneic phase than the apneic phase of CSR. VPB frequency is also higher during periods of CSR than during periods of regular breathing, with or without correction of hypoxia. In summary, CSR exerts multiple effects on the cardiovascular system that are likely manifestations of respiratory modulation of autonomic activity. It is speculated that the rhythmic oscillations in autonomic tone brought about by CSR may ultimately contribute to the sympatho-excitation and increased mortality long observed in patients with heart failure and CSR.  相似文献   

8.
Decreased vagal activity and increased sympathetic arousal have been proposed as major contributors to the increased risk of cardiovascular mortality in patients with depression. It was aim of the present study to assess the feasibility of using heart rate variability (HRV) biofeedback to treat moderate to severe depression. This was an open-label study in which 14 patients with different degrees of depression (13 f, 1 m) aged 30 years (18–47; median; range) and 12 healthy volunteers attended 6 sessions of HRV biofeedback over two weeks. Another 12 healthy subjects were observed under an active control condition. At follow up BDI was found significantly decreased (BDI 6; 2–20; median 25%–75% quartile) as compared to baseline conditions (BDI 22;15–29) in patients with depression. In addition, depressed patients had reduced anxiety, decreased heart rate and increased HRV after conduction of biofeedback (p < 0.05). By contrast, no changes were noted in healthy subjects receiving biofeedback nor in normal controls. In conclusion, HRV biofeedback appears to be a useful adjunct for the treatment of depression, associated with increases in HRV.  相似文献   

9.
Resting heart rate variability can be an index of sympathetic or parasympathetic dominance, according to the frequency of the variability studied. Sympathetic dominance of this system has been linked to increased risk of cardiovascular disease (CVD). Similarly, rapid and dramatic increases in heart rate reactivity to a stressor task have also been suggested as indicating increased risk of CVD via atherogenesis. Although both of these variables have been related to the development of cardiovascular disease, and both may be related to increased sympathetic activity or parasympathetic withdrawal, most research studies have tended to focus on either variable independently of the other. In order to investigate whether these two indices of stressor reactivity were related in relatively young and healthy subjects, resting heart rate variability data were collected from 80 volunteers for 20 minutes. In addition, heart rate reactivity data were collected during a 2-minute mental arithmetic stressor, which has been previously shown to induce significant increases in heart rate. After classifying subjects according to whether their heart rate variability data were above or below the mean for their gender, heart rate reactivity data were examined via MANOVA to detect significant differences between subject groups. Females showed significant effects, and males showed nonsignificant trends, but these two sets of data were in different directions, suggesting that gender may be a confounding factor in the relationship between heart rate reactivity and heart rate variability.  相似文献   

10.
Biophysical features of 0.1-Hz oscillations of heart rate variability (HRV) and distal blood flow (DBF) variability were compared in healthy subjects and patients after acute myocardial infarction (MI). Patients with acute MI (72 men and 53 women; 125 in total) and healthy subjects (23 men and 10 women; 33 in total) aged 30?C83 and 20?C46 years, respectively, participated in the study. The patients were involved in the study for a year after acute MI. The delay in coupling 0.1-Hz oscillations of HRV and DBF variability was estimated. In healthy subjects, the delay in the heart ?? DBF coupling proved to be less than the delay in the DBF ?? heart coupling. Acute MI results mainly in disruption of the heart ?? DBF coupling, which is partially restored by the end of the first year after acute MI, though it remains lower than in healthy subjects. The DBF ?? heart coupling is rapidly restored to the level of healthy subjects within three weeks after acute MI.  相似文献   

11.
Despite previous findings of therapeutic effects for heart rate variability biofeedback (HRVB) on asthma, it is not known whether HRVB can substitute either for controller or rescue medication, or whether it affects airway inflammation. Sixty-eight paid volunteer steroid naïve study participants with mild or moderate asthma were given 3 months of HRVB or a comparison condition consisting of EEG alpha biofeedback with relaxing music and relaxed paced breathing (EEG+), in a two-center trial. All participants received a month of intensive asthma education prior to randomization. Both treatment conditions produced similar significant improvements on the methacholine challenge test (MCT), asthma symptoms, and asthma quality of life (AQOL). MCT effects were of similar size to those of enhanced placebo procedures reported elsewhere, and were 65% of those of a course of a high-potency inhaled steroid budesonide given to a sub-group of participants following biofeedback training. Exhaled nitric oxide decreased significantly only in the HRVB group, 81% of the budesonide effect, but with no significant differences between groups. Participants reported becoming more relaxed during practice of both techniques. Administration of albuterol after biofeedback sessions produced a large improvement in pulmonary function test results, indicating that neither treatment normalized pulmonary function as a potent controller medication would have done. Impulse oscillometry showed increased upper airway (vocal cord) resistance during biofeedback periods in both groups. These data suggest that HRVB should not be considered an alternative to asthma controller medications (e.g., inhaled steroids), although both biofeedback conditions produced some beneficial effects, warranting further research, and suggesting potential complementary effects. Various hypotheses are presented to explain why HRVB effects on asthma appeared smaller in this study than in earlier studies. Clinical Trial Registration NCT02766374.  相似文献   

12.
Time–frequency (T–F) analysis is often used to study the non-stationary cardiovascular oscillations such as heart rate and blood pressure variabilities in dynamic situations. This study intends to use the T–F recursive autoregressive technique to investigate variability in pulse transit time (PTT), which is a cardiovascular parameter of emerging interest due to its potential to estimate blood pressure non-invasively, continuously and without a cuff. Recent studies suggest that PTT is not only related to systolic blood pressure (SBP) but also to heart rate. Therefore, in this study, variability of PTT is analyzed together with the variabilities of R–R interval (RRI) from electrocardiogram and beat-to-beat SBP on 9 normotensive subjects before and shortly after three successive bouts of treadmill exercise. The results showed that both low frequency (LF) and high frequency (HF) components were found in the spectra of RRI, SBP and PTT in the 5-min recordings collected before and after exercise. Compared to the baseline, a decrease in the power of the HF component of RRI followed by an increase in its LF component indicated firstly a vagal withdrawal and then sympathetic activity enhancement after successive bouts of exercise. On the other hand, although changes in the LF and HF components of PTT were more similar to those of SBP than of RRI, the LF/HF ratio of SBP was almost 4 times higher than that of PTT. Based on the results, it is therefore suggested that the relationship between SBP and PTT is frequency-dependent.  相似文献   

13.
ObjectiveTo test whether rhythmic formulas such as the rosary and yoga mantras can synchronise and reinforce inherent cardiovascular rhythms and modify baroreflex sensitivity.DesignComparison of effects of recitation of the Ave Maria (in Latin) or of a mantra, during spontaneous and metronome controlled breathing, on breathing rate and on spontaneous oscillations in RR interval, and on blood pressure and cerebral circulation.SettingFlorence and Pavia, Italy.Participants23 healthy adults.ResultsBoth prayer and mantra caused striking, powerful, and synchronous increases in existing cardiovascular rhythms when recited six times a minute. Baroreflex sensitivity also increased significantly, from 9.5 (SD 4.6) to 11.5 (4.9) ms/mm Hg, P<0.05.ConclusionRhythm formulas that involve breathing at six breaths per minute induce favourable psychological and possibly physiological effects.

What is already known on this topic

Reduced heart rate variability and baroreflex sensitivity are powerful and independent predictors of poor prognosis in heart diseaseSlow breathing enhances heart rate variability and baroreflex sensitivity by synchronising inherent cardiovascular rhythms

What this study adds

Recitation of the rosary, and also of yoga mantras, slowed respiration to almost exactly 6/min, and enhanced heart rate variability and baroreflex sensitivityThe rosary might be viewed as a health practice as well as a religious practice  相似文献   

14.
Previous studies have shown that exposure to an electromagnetic field (EMF) of 37 Hz at a flux density of 80 microT peak enhances nociceptive sensitivity in mice. Here we examined the effects on pain sensitivity and some indexes of cardiovascular regulation mechanisms in humans by measuring electrical cutaneous thresholds, arterial blood pressure, heart rate and its variability, and stress hormones. Pain and tolerance thresholds remained unchanged after sham exposure but significantly decreased after electromagnetic exposure. Systolic blood pressure was significantly higher during electromagnetic exposure and heart rate significantly decreased, both during sham and electromagnetic exposure, while the high frequency (150-400 mHz) component of heart rate variability, which is an index of parasympathetic activity, increased as expected during sham exposure but remained unchanged during electromagnetic exposure. Cortisol significantly decreased during sham exposure only. These results show that exposure to an EMF of 37 Hz also alters pain sensitivity in humans and suggest that these effects may be associated with abnormalities in cardiovascular regulation.  相似文献   

15.
Intrafemoral pulsatile blood pressure of conscious rats was computed to generate evenly spaced signals (systolic, diastolic, mean blood pressure, heart rate) at 200 ms intervals. This equidistant sampling allowed a direct spectral analysis using a Fast Fourier Transform algorithm. Systolic blood pressure and heart rate exhibited low frequency oscillations (Mayer waves, 20-605 mHz) and a high frequency peak related to respiration (1,765 mHz). The diastolic blood pressure and the mean blood pressure only exhibited low frequency oscillations. This procedure could be useful to analyze the various components of blood pressure variability.  相似文献   

16.
Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge.  相似文献   

17.
The following objectives were set out to study the effect of EEG α power increase training on the heart rate variability (HRV) as an index of the autonomic regulation of cognitive functions: (1) to establish the interrelation between a voluntary increase in the α power in the individual upper α band and the HRV and related characteristics of cognitive and emotional spheres; (2) to determine the nature of the relationship between the α-activity indices and HRV depending on the resting α-frequency EEG pattern; and (3) to study how the individual α-frequency EEG pattern is reflected in the HRV changes as a result of biofeedback training. Psychometric indices of cognitive performance and the characteristics of EEG α activity and HRV were recorded in 27 healthy men 18–34 years of age before, during, and after ten training sessions of a voluntary increase in α power in the individual upper α band with the eyes closed. To determine the biofeedback effect in the α power increase training, the data of two groups were compared: the experimental, with a real biofeedback (14 subjects), and the control, with a sham biofeedback (13 subjects). The follow-up effect of the training was assessed one month after its end. The results showed that α biofeedback training increased the resting α frequency, improved cognitive performance, reduced psychoemotional stress, and increased HRV only in the subjects with a low baseline α frequency. In the subjects with a high baseline resting α frequency, the α biofeedback training had no effect on the resting α power and cognitive performance but reduced the HRV (judging by the pNN 50 parameter). The positive correlation between the α peak frequency and HRV in subjects with initially low α frequency and the negative correlation in the subjects with a high baseline α frequency explains the opposite biofeedback effects on HRV in subjects with low and high α frequency. From the theoretical standpoint, the results of this study contribute to understanding the mechanisms of heart-brain neurovisceral relationships and their effect on the cognitive performance. From the applied standpoint, they suggest that EEG biofeedback can be used for improving autonomic regulation in healthy subjects and the development of individual approaches to the development of the biofeedback technology, which can be used both in clinical practice for treatment and rehabilitation of psychosomatic syndromes and in educational training.  相似文献   

18.
The variability of the following spectral parameters was studied in apparently healthy adult subjects: heart rate, stroke volume, left ventricular ejection fraction, amplitude of aortal pulsing, amplitude of peripheral vessel pulsation in the first toe, and systolic blood pressure. The average values of the parameter of blood circulation per 500 heart beats (M), total power of variation spectrum of blood circulation parameter (TP), and absolute and relative powers of the oscillations of blood circulation parameter were estimated in the following spectral bands: ultralow frequency (ULF, % ULF), very low frequency (VLF, % VLF), low frequency (LF, % LF), and high frequency (HF, % HF). The variability of each blood circulation parameter proved to be characterized by a specific ratio of slow oscillations of different frequencies, which was a result of the specific regulation of this parameter. The parameters of central hymodynamics were relatively similar in oscillation structure. The oscillation spectra of the parameters of central and peripheral hemodynamics differed significantly. In adulthood, sex-related differences were determined in spectral parameters of the heart rate variability (ULF and VLF were higher in women), in the ejection fraction (% ULF was higher in women), in the amplitude of aortal pulsation (TP, ULF, VLF, LF and HF were higher in women), in the amplitude of pulsation of the peripheral vessels in the first toe (TP, ULF, VLF, LF and HF were higher in men), and in the blood pressure (% ULF was higher in women).  相似文献   

19.
The aim in the present experiments was to assess the dynamic baroreflex control of blood pressure, to develop an accurate mathematical model that represented this relationship, and to assess the role of dynamic changes in heart rate and stroke volume in giving rise to components of this response. Patterned electrical stimulation [pseudo-random binary sequence (PRBS)] was applied to the aortic depressor nerve (ADN) to produce changes in blood pressure under open-loop conditions in anesthetized rabbits. The stimulus provided constant power over the frequency range 0-0.5 Hz and revealed that the composite systems represented by the central nervous system, sympathetic activity, and vascular resistance responded as a second-order low-pass filter (corner frequency approximately 0.047 Hz) with a time delay (1.01 s). The gain between ADN and mean arterial pressure was reasonably constant before the corner frequency and then decreased with increasing frequency of stimulus. Although the heart rate was altered in response to the PRBS stimuli, we found that removal of the heart's ability to contribute to blood pressure variability by vagotomy and beta(1)-receptor blockade did not significantly alter the frequency response. We conclude that the contribution of the heart to the dynamic regulation of blood pressure is negligible in the rabbit. The consequences of this finding are examined with respect to low-frequency oscillations in blood pressure.  相似文献   

20.
Major depressive disorder (MDD) is a common mood disorder that can result in significant discomfort as well as interpersonal and functional disability. A growing body of research indicates that autonomic function is altered in depression, as evidenced by impaired baroreflex sensitivity, changes in heart rate, and reduced heart rate variability (HRV). Decreased vagal activity and increased sympathetic arousal have been proposed as major contributors to the increased risk of cardiovascular mortality in participants with MDD, and baroreflex gain is decreased. STUDY OBJECTIVES: To assess the feasibility of using HRV biofeedback to treat major depression. DESIGN: This was an open-label study in which all eleven participants received the treatment condition. Participants attended 10 weekly sessions. Questionnaires and physiological data were collected in an orientation (baseline) session and Treatment Sessions 1, 4, 7 and 10. MEASUREMENTS AND RESULTS: Significant improvements were noted in the Hamilton Depression Scale (HAM-D) and the Beck Depression Inventory (BDI-II) by Session 4, with concurrent increases in SDNN, standard deviation of normal cardiac interbeat intervals) an electrocardiographic estimate of overall measure of adaptability. SDNN decreased to baseline levels at the end of treatment and at follow-up, but clinically and statistically significant improvement in depression persisted. Main effects for task and session occurred for low frequency range (LF) and SDNN. Increases in these variables also occurred during breathing at one's resonant frequency, which targets baroreflex function and vagus nerve activity, showing that subjects performed the task correctly. CONCLUSIONS: HRV biofeedback appears to be a useful adjunctive treatment for the treatment of MDD, associated with large acute increases in HRV and some chronic increases, suggesting increased cardiovagal activity. It is possible that regular exercise of homeostatic reflexes helps depression even when changes in baseline HRV are smaller. A randomized controlled trial is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号