首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The understanding of neurodegenerative diseases of childhood has been changing rapidly in recent times: not only is the number of different diseases and underlying genetic defects steadily increasing, approaches to diagnosis and treatment have also developed because of recent technological and therapeutic advances relating to this group of disorders. New gene defects have been identified that provide a basis for understanding the molecular mechanisms underlying this group of diseases, and for the development of targeted therapies. This review focuses predominantly on one of the most common groups of diseases leading to degeneration of the central nervous system, neuronal ceroid lipofuscinosis (NCL). The number of NCL-causing genes and knowledge about genotype–phenotype correlations has been growing over the past few years and the first therapies have been developed. Hence, this group of diseases represents the rapid scientific development in the field of rare neurodegenerative diseases in childhood very well.  相似文献   

2.
Mitochondrial DNA mutations and human disease   总被引:1,自引:0,他引:1  
Helen A.L. Tuppen 《BBA》2010,1797(2):113-109
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances.  相似文献   

3.
In higher eukaryotes, glucosylceramide is the simplest member and precursor of a fascinating class of membrane lipids, the glycosphingolipids. These lipids display an astounding variation in their carbohydrate head groups, suggesting that glycosphingolipids serve specialized functions in recognition processes. It is now realized that they are organized in signalling domains on the cell surface. They are of vital importance as, in their absence, embryonal development is inhibited at an early stage. Remarkably, individual cells can live without glycolipids, perhaps because their survival does not depend on glycosphingolipid-mediated signalling mechanisms. Still, these cells suffer from defects in intracellular membrane transport. Various membrane proteins do not reach their intracellular destination, and, indeed, some intracellular organelles do not properly differentiate to their mature stage. The fact that glycosphingolipids are required for cellular differentiation suggests that there are human diseases resulting from defects in glycosphingolipid synthesis. In addition, the same cellular differentiation processes may be affected by defects in the degradation of glycosphingolipids. At the cellular level, the pathology of glycosphingolipid storage diseases is not completely understood. Cell biological studies on the intracellular fate and function of glycosphingolipids may open new ways to understand and defeat not only lipid storage diseases, but perhaps other diseases that have not been connected to glycosphingolipids so far.  相似文献   

4.
溶质转运蛋白(solute carriers,SLC)超家族是人类细胞膜(含胞内膜)上最重要的膜转运蛋白家族之一,它参与了细胞间的物质运输、能量传递、营养代谢、信号传导等重要生理活动。SLC转运蛋白超家族包含52个亚家族,共有400多名成员。研究表明,人类基因突变所致SLC蛋白表达异常或功能缺陷与糖尿病、高血压、抑郁症等多种重大疾病密切相关,使得该家族蛋白的功能研究近年来备受关注。SLC转运家族蛋白三维结构的解析有助于阐述其底物选择性结合与转运的精确分子机制,为研究该家族功能相关疾病的分子机理以及针对理性药物研发奠定了精细的三维结构基础。本文对近年来溶质转运蛋白超家族的结构及功能研究进展进行了总结,试图对该家族的共性规律进行阐述。  相似文献   

5.
The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding of the structure and regulation of the V-ATPases, together with the mapping of human genetic defects to genes that encode V-ATPase subunits, have led to tremendous excitement in this field.  相似文献   

6.
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.  相似文献   

7.
In this brief paper, the author reports on a meeting on copper research (2nd International Meeting on Copper Homeostasis and its Disorders: Molecular and Cellular Aspects) recently held in Ravello, Italy (17–21 September 1999). Aimed at elucidating the diverse roles played by copper ions in biology and medicine, as they are currently intensely investigated worldwide, the meeting has been organized around a number of major topics from prominent areas of copper research. These included the molecular and cellular basis of copper transport, molecular advances in Menkes and Wilson's diseases, the involvement of copper in neurodegenerative diseases, the structure and function of copper metalloproteins.  相似文献   

8.
9.
Copper is an essential trace element that plays a very important role in cell physiology. In humans, disruption of normal copper homeostasis leads to severe disorders, such as Menkes disease and Wilson's disease. Recent genetic, cell biological, and biochemical studies have begun to dissect the molecular mechanisms involved in transmembrane transport and intracellular distribution of copper in mammalian cells. In this review, we summarize the advances that have been made in understanding of structure, function, and regulation of the key human copper transporters, the Menkes disease and Wilson's disease proteins.  相似文献   

10.
Structure,Function, and Evolution of Bacterial ATP-Binding Cassette Systems   总被引:1,自引:0,他引:1  
Summary: ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.  相似文献   

11.
Interaction of pathogenic mycobacteria with the host immune system   总被引:4,自引:0,他引:4  
Pathogenic mycobacteria, in particular Mycobacterium tuberculosis, the causative agent of tuberculosis, have the remarkable capacity to circumvent destruction within one of the most hostile cell types of a vertebrate host: the macrophage. The ability of pathogenic mycobacteria to survive inside macrophages has been known for more than 30 years; yet, only recently have advances in molecular genetics, biochemistry, immunology, as well as global analysis of gene expression, started to unravel the strategies utilized by these pathogens for intracellular persistence. In addition, the definition of key molecules that are important for intracellular survival opens the possibility to develop new drugs to combat mycobacterial diseases.  相似文献   

12.
Mutations and alterations in caveolin‐1 expression levels have been linked to a number of human diseases. How misregulation of caveolin‐1 contributes to disease is not fully understood, but has been proposed to involve the intracellular accumulation of mutant forms of the protein. To better understand the molecular basis for trafficking defects that trap caveolin‐1 intracellularly, we compared the properties of a GFP‐tagged version of caveolin‐1 P132L, a mutant form of caveolin‐1 previously linked to breast cancer, with wild‐type caveolin‐1. Unexpectedly, wild‐type caveolin‐1‐GFP also accumulated intracellularly, leading us to examine the mechanisms underlying the abnormal localization of the wild type and mutant protein in more detail. We show that both the nature of the tag and cellular context impact the subcellular distribution of caveolin‐1, demonstrate that even the wild‐type form of caveolin‐1 can function as a dominant negative under some conditions, and identify specific conformation changes associated with incorrectly targeted forms of the protein. In addition, we find intracellular caveolin‐1 is phosphorylated on Tyr14, but phosphorylation is not required for mistrafficking of the protein. These findings identify novel properties of mistargeted forms of caveolin‐1 and raise the possibility that common trafficking defects underlie diseases associated with overexpression and mutations in caveolin‐1.  相似文献   

13.
The latest fashions in skin disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
The complex nature of epidermal tissue homeostasis is borne out by the range of diseases affecting this tissue. Indeed, mutations in proteins involved in intracellular integrity and cell-cell or cell-matrix adhesion can cause disease in an appropriate epidermal compartment. The most important realization in epidermal disease in the last two years has been that point mutations in key structural genes can result in filaments collapsing, cell cytolysis, or cell adhesion defects; and that these defects can result in severe human skin disease. Now that these associations have been made, the important next step will be to alleviate the suffering of these patients. Animal models will be an important part of these investigations; many molecules including growth factors, oncogenes, and cell adhesion molecules have been targeted to the epidermis of transgenic mice to investigate their role in disease. Such animal models should also elucidate the causes of diseases like psoriasis, a very common skin disease, the molecular basis of which remains elusive. Gene therapy involving the replacement of defective genes or local delivery of therapeutic molecules will be one of the main goals in alleviating these known epidermal diseases. Such protocols in the epidermis are aided by the relative accessibility of the skin and the presence of the "stem cells" in relatively accessible compartments. Indeed, as the last few years have shed much light on the genetic causes of epidermal disease, it is hoped that the next several years will prove as illuminating in the alleviation of these diseases.  相似文献   

14.
W. Faigle  G. Raposo  S. Amigorena 《Protoplasma》2000,210(3-4):117-122
Summary Chediak—Higashi syndrome is a rare human genetic disease causing severe immunodeficiencies and defects in pigmentation. The mutated gene codes for a large cytosolic protein with several domains mediating protein—protein interactions, playing a yet unclear role in endosomal membrane transport. Several genetic diseases with similar clinical characteristics (like the Griscelli, Hermansky—Pudlak, and Chediak—Higashi syndromes) also show related defects in intracellular membrane trafficking. Analyzing intracellular transport in cells from these patients shed light on the function of important players in lysosomal membrane traffic in effector cells of the immune system.  相似文献   

15.
Members of the ABC (ATP-binding cassette) superfamily of genes encode transmembrane proteins that are involved in the transport of a variety of substrates both in and out of the cells, in addition to across intracellular membranes. Recently, mutations in two ABC-transporter genes, ABCC6 and ABCA12, have been demonstrated to underlie phenotypically different diseases affecting the skin (pseudoxanthoma elasticum and harlequin ichthyosis, respectively), attesting to the spectrum of ABC gene mutations in human diseases. These findings have a major impact on the molecular genetics of these devastating disorders in terms of DNA-based prenatal testing and pre-implantation genetic diagnosis.  相似文献   

16.
Renal tubular acidosis (RTA) is characterized by metabolic acidosis due to renal impaired acid excretion. Hyperchloremic acidosis with normal anion gap and normal or minimally affected glomerular filtration rate defines this disorder. RTA can also present with hypokalemia, medullary nephrocalcinosis and nephrolitiasis, as well as growth retardation and rickets in children, or short stature and osteomalacia in adults. In the past decade, remarkable progress has been made in our understanding of the molecular pathogenesis of RTA and the fundamental molecular physiology of renal tubular transport processes. This review summarizes hereditary diseases caused by mutations in genes encoding transporter or channel proteins operating along the renal tubule. Review of the molecular basis of hereditary tubulopathies reveals various loss-of-function or gain-of-function mutations in genes encoding cotransporter, exchanger, or channel proteins, which are located in the luminal, basolateral, or endosomal membranes of the tubular cell or in paracellular tight junctions. These gene mutations result in a variety of functional defects in transporter/channel proteins, including decreased activity, impaired gating, defective trafficking, impaired endocytosis and degradation, or defective assembly of channel subunits. Further molecular studies of inherited tubular transport disorders may shed more light on the molecular pathophysiology of these diseases and may significantly improve our understanding of the mechanisms underlying renal salt homeostasis, urinary mineral excretion, and blood pressure regulation in health and disease. The identification of the molecular defects in inherited tubulopathies may provide a basis for future design of targeted therapeutic interventions and, possibly, strategies for gene therapy of these complex disorders.Key Words: Renal tubular acidosis, acid-base homeostasis, molecular physiology, tubular transport, gene mutations.  相似文献   

17.
18.
Rab GTPases, intracellular traffic and disease.   总被引:13,自引:0,他引:13  
Membrane and protein traffic in the secretory and endocytic pathways is mediated by vesicular transport. Recent studies of certain key regulators of vesicular transport, the Rab GTPases, have linked Rab dysfunction to human disease. Mutations in Rab27a result in Griscelli syndrome, caused by defects in melanosome transport in melanocytes and loss of cytotoxic killing activity in Tcells. Other genetic diseases are caused by partial dysfunction of multiple Rab proteins resulting from mutations in general regulators of Rab activity; Rab escort protein-1 (choroideremia), Rab geranylgeranyl transferase (Hermansky-Pudlak syndrome) and Rab GDP dissociation inhibitor-alpha (X-linked mental retardation). In infectious diseases caused by intracellular microorganisms, the function of endocytic Rabs is altered either as part of host defences or as part of survival strategy of the pathogen. The human genome is predicted to contain 60 RAB genes, suggesting that future work could reveal further links between Rab dysfunction and disease.  相似文献   

19.
Neurons require a large amount of intracellular transport. Cytoplasmic polypeptides and membrane-bounded organelles move from the perikaryon, down the length of the axon, and to the synaptic terminals. This movement occurs at distinct rates and is termed axonal transport. Axonal transport is divided into the slow transport of cytoplasmic proteins including glycolytic enzymes and cytoskeletal structures and the fast transport of membrane-bounded organelles along linear arrays of microtubules. The polypeptide compositions of the rate classes of axonal transport have been well characterized, but the underlying molecular mechanisms of this movement are less clear. Progress has been particularly slow toward understanding force-generation in slow transport, but recent developments have provided insight into the molecular motors involved in fast axonal transport. Recent advances in the cellular and molecular biology of one fast axonal transport motor, kinesin, have provided a clearer understanding of organelle movement along microtubules. The availability of cellular and molecular probes for kinesin and other putative axonal transport motors have led to a reevaluation of our understanding of intracellular motility.  相似文献   

20.
Apicomplexa are an extremely diverse group of unicellular organisms that infect humans and other animals.Despite the great advances in combating infectious diseases over the past century,these parasites still have a tremendous social and economic burden on human societies,particularly in tropical and subtropical regions of the world.Proteases from apicomplexa have been characterized at the molecular and cellular levels,and central roles have been proposed for proteases in diverse processes.In this work,16 new genes encoding for trypsin proteases are identified in 8 apicomplexan genomes by a genome-wide survey.Phylogenetic analysis suggests that these genes were gained through both intracellular gene transfer and vertical gene transfer.Identification,characterization and understanding of the evolutionary origin of protease-mediated processes are crucial to increase the knowledge and improve the strategies for the development of novel chemotherapeutic agents and vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号