首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N‐end rule denotes the relationship between the identity of the amino‐terminal residue of a protein and its in vivo half‐life. Since its discovery in 1986, the N‐end rule has generally been described by a defined set of rules for determining whether an amino‐terminal residue is stabilizing or not. However, recent studies are revealing that this N‐end rule (or N‐degron concept) is less straightforward than previously appreciated. For instance, it is unveiled that N‐terminal acetylation of N‐terminal residues may create a degradation signal (Ac‐degron) that promotes the degradation of target proteins. A recent high‐throughput dissection of degrons in yeast proteins amino termini intriguingly suggested that the hydrophobicity of amino‐terminal residues—but not the N‐terminal acetylation status—may be the indispensable feature of amino‐terminal degrons. Herein, these recent advances in N‐terminal acetylation and the complexity of N‐terminal degradation signals in the context of the N‐degron pathway are analyzed.  相似文献   

2.
Although chloroplast protein stability has long been recognised as a major level of post‐translational regulation in photosynthesis and gene expression, the factors determining protein stability in plastids are largely unknown. Here, we have identified stability determinants in vivo by producing plants with transgenic chloroplasts that express a reporter protein whose N‐ and C‐termini were systematically modified. We found that major stability determinants are located in the N‐terminus. Moreover, testing of all 20 amino acids in the position after the initiator methionine revealed strong differences in protein stability and indicated an important role of the penultimate N‐terminal amino acid residue in determining the protein half life. We propose that the stability of plastid proteins is largely determined by three factors: (i) the action of methionine aminopeptidase (the enzyme that removes the initiator methionine and exposes the penultimate N‐terminal amino acid residue), (ii) an N‐end rule‐like protein degradation pathway, and (iii) additional sequence determinants in the N‐terminal region.  相似文献   

3.
In Escherichia coli, the ClpAP protease, together with the adaptor protein ClpS, is responsible for the degradation of proteins bearing an amino‐terminal destabilizing amino acid (N‐degron). Here, we determined the three‐dimensional structures of ClpS in complex with three peptides, each having a different destabilizing residue—Leu, Phe or Trp—at its N terminus. All peptides, regardless of the identity of their N‐terminal residue, are bound in a surface pocket on ClpS in a stereo‐specific manner. Several highly conserved residues in this binding pocket interact directly with the backbone of the N‐degron peptide and hence are crucial for the binding of all N‐degrons. By contrast, two hydrophobic residues define the volume of the binding pocket and influence the specificity of ClpS. Taken together, our data suggest that ClpS has been optimized for the binding and delivery of N‐degrons containing an N‐terminal Phe or Leu.  相似文献   

4.
    
The pro/N‐degron pathway is an evolved protein degradation pathway through the ubiquitin‐proteasome system. It is a vital pathway to attain protein homeostasis inside the liver cells with varying glucose levels. N‐terminal proline exists in more than 300 proteins in Saccharomyces cerevisiae, but only three of them are the gluconeogenic enzymes; isocitrate lyase (Icl1), fructose‐1,6‐bisphosphatase (Fbp1), and malate dehydrogenase (Mdh2). The present in silico study aims to structurally illustrate the binding of Icl1 enzyme to Gid4 ligase concerning its peers; Fbp1 and Mdh2. Based on the molecular docking scores and interactions, one can attribute the binding stability of Gid4 with degrons, to peptides of length six up to eight from the N‐terminal. Moreover, the percent change in the docking score provides a rationale for the unique Gid4‐Icl11‐4 interaction. The present study provides insights on the binding attitude of Gid4 ligase to degrons of different lengths, so one will consider in designing peptidomimetics to target Gid4 ligase.  相似文献   

5.
    
The N‐end rule pathway is conserved from bacteria to man and determines the half‐life of a protein based on its N‐terminal amino acid. In Escherichia coli, model substrates bearing an N‐degron are recognised by ClpS and degraded by ClpAP in an ATP‐dependent manner. Here, we report the isolation of 23 ClpS‐interacting proteins from E. coli. Our data show that at least one of these interacting proteins—putrescine aminotransferase (PATase)—is post‐translationally modified to generate a primary N‐degron. Remarkably, the N‐terminal modification of PATase is generated by a new specificity of leucyl/phenylalanyl‐tRNA‐protein transferase (LFTR), in which various combinations of primary destabilising residues (Leu and Phe) are attached to the N‐terminal Met. This modification (of PATase), by LFTR, is essential not only for its recognition by ClpS, but also determines the stability of the protein in vivo. Thus, the N‐end rule pathway, through the ClpAPS‐mediated turnover of PATase may have an important function in putrescine homeostasis. In addition, we have identified a new element within the N‐degron, which is required for substrate delivery to ClpA.  相似文献   

6.
    
The N‐end rule relates the regulation of the in vivo half‐life of a protein to the identity of its N‐terminal residue. Degradation signals (degrons) that are targeted by the N‐end rule pathway include a set called N‐degrons. The main determinant of an N‐degron is a destabilizing N‐terminal residue of a protein. In eukaryotes, the N‐end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N‐end rule and the Arg/N‐end rule pathways. The Ac/N‐end rule pathway targets proteins containing Nα‐terminally acetylated (Nt‐acetylated) residues. The Arg/N‐end rule pathway recognizes unacetylated N‐terminal residues and involves N‐terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt‐acetylated. Thus, most proteins harbor a specific degradation signal, termed AcN‐degron, from the moment of their birth. Specific N‐end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N‐degrons include methionine‐aminopeptidases, caspases, calpains, Nt‐acetylases, Nt‐amidases, arginyl‐transferases, and leucyl‐transferases. Regulated degradation of specific proteins by the N‐end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation, and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.  相似文献   

7.
8.
    
Despite extensive understanding of sleep regulation, the molecular‐level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca2+ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca2+‐activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca2+ transients) while fragment‐destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness‐increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol‐induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca2+ alone or Ca2+ and its ionophore (Erickson et al., Science 1978;199:1219–1221; Harris, Pharmacol Biochem Behav 1979;10:527–534; Erickson et al., Pharmacol Biochem Behav 1980;12:651–656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep.  相似文献   

9.
10.
    
The a subunit of the V0 membrane‐integrated sector of human V‐ATPase has four isoforms, a1a4, with diverse and crucial functions in health and disease. They are encoded by four conserved paralogous genes, and their vertebrate orthologs have positionally conserved N‐glycosylation sequons within the second extracellular loop, EL2, of the a subunit membrane domain. Previously, we have shown directly that the predicted sequon for the a4 isoform is indeed N‐glycosylated. Here we extend our investigation to the other isoforms by transiently transfecting HEK 293 cells to express cDNA constructs of epitope‐tagged human a1a3 subunits, with or without mutations that convert Asn to Gln at putative N‐glycosylation sites. Expression and N‐glycosylation were characterized by immunoblotting and mobility shifts after enzymatic deglycosylation, and intracellular localization was determined using immunofluorescence microscopy. All unglycosylated mutants, where predicted N‐glycosylation sites had been eliminated by sequon mutagenesis, showed increased relative mobility on immunoblots, identical to what was seen for wild‐type a subunits after enzymatic deglycosylation. Cycloheximide‐chase experiments showed that unglycosylated subunits were turned over at a higher rate than N‐glycosylated forms by degradation in the proteasomal pathway. Immunofluorescence colocalization analysis showed that unglycosylated a subunits were retained in the ER, and co‐immunoprecipitation studies showed that they were unable to associate with the V‐ATPase assembly chaperone, VMA21. Taken together with our previous a4 subunit studies, these observations show that N‐glycosylation is crucial in all four human V‐ATPase a subunit isoforms for protein stability and ultimately for functional incorporation into V‐ATPase complexes.  相似文献   

11.
    
Gluconeogenesis, the reverse process of glycolysis, is a favorable mechanism at conditions of glucose deprivation. Pck1 is a rate‐limiting gluconeogenic enzyme, where its deficiency or mutation contributes to serious clinical situations as neonatal hypoglycemia and liver failure. A recent report confirms that Pck1 is a target for proteasomal degradation through its proline residue at the penultimate position, recognized by Gid4 E3 ligase, but with a lack of informative structural details. In this study, we delineate the localized sequence motif, degron, that specifically interact with Gid4 ligase and unravel the binding mode of Pck1 to the Gid4 ligase by using molecular docking and molecular dynamics. The peptide/protein docking HPEPDOCK web server along with molecular dynamic simulations are applied to demonstrate the binding mode and interactions of a Pck1 wild type (SPSK) and mutant (K4V) with the recently solved structure of Gid4 ligase. Results unveil a distinct binding mode of the mutated peptide compared with the wild type despite having comparable binding affinities to Gid4. Moreover, the four‐residue peptide is found insufficient for Gid4 binding, while the seven‐residue peptide suffices for binding to Gid4. The amino acids S134, K135, and N137 in the loop L1 (between β1 and β2) of the Gid4 are essential for the stabilization of the seven‐residue peptide in the binding site of the ligase. The presence of Val4 instead of Lys4 smashes the H‐bonds that are formed between Lys4 and Gid4 in the wild type peptide, making the peptide prone to bind with the other side of the binding pocket (L4 loop of Gid4). The dynamics of Gid4 L3 loop is affected dramatically once K4V mutant Pck1 peptide is introduced. This opens the door to explore the mutation effects on the binding mode and smooth the path to target protein degradation by design competitive and non‐competitive inhibitors.  相似文献   

12.
In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods.  相似文献   

13.
Aim: In Pediococcus acidilactici ATCC 8042, two activities of peptidoglycan hydrolase (PGH) with lytic effect against Micrococcus lysodeikticus and Staphylococcus aureus have been detected. This work intends to elucidate the growth phase of maximum lytic activity, the localization and the effectiveness of the activity against pathogenic Gram‐negative and Gram‐positive bacteria. Methods and Results: Cells were grown in MRS medium and collected at different growth stages, and the proteins were extracted. The highest PGH activity was found during the logarithmic growth phase in the protein fraction bound to the cell membrane. From this fraction, two distinct proteins bands (110‐ and 99‐kDa) in SDS–PAGE were partially purified with a three‐step procedure. Both bands showed lytic activity against M. lysodeikticus. Mass spectrometry analysis (LC/ESI‐MS/MS) indicated that the 110‐kDa band corresponded to a protein of unknown function. The 99‐kDa band corresponded to a N‐acetylmuramidase that harboured catalytic sites with N‐acetylmuramoyl‐l ‐alanine amidase and N‐acetylglucosaminidase activities. Both proteins are reported in the Ped. acidilactici 7_4 genome. The fraction containing the concentrated proteins (110 and 99 kDa) inhibited the growth of several pathogenic strains as: Bacillus cereus, Listeria monocytogenes and Salmonella typhimurium. The growth of S. aureus was diminished by 3 logarithmic units as early as 0·5 h of growth, while inhibition of Escherichia coli and Ped. acidilactici was observed after 18 and 8 h, respectively (both in one logarithmic unit). The minimum inhibitory concentration against S. aureus was 10 μg ml?1. Conclusion: Pediococcus acidilactici harbours at least two lytic enzymes, one of them recognized as PGH for the first time, which exert antibacterial activity against several bacterial strains. Significance and Impact of the Study: Both PGH activities have a broad growth inhibition spectrum and could be used to control pathogenic bacteria. Because this activity comes from a lactic acid bacterium, it could be safely used in manufacturing processes of fermented foods.  相似文献   

14.
    
(3R,5R)‐Clavulanic acid (CA) is a clinically important inhibitor of Class A β‐lactamases. Sequence comparisons suggest that orf14 of the clavulanic acid biosynthesis gene cluster encodes for an acetyl transferase (CBG). Crystallographic studies reveal CBG to be a member of the emerging structural subfamily of tandem Gcn5‐related acetyl transferase (GNAT) proteins. Two crystal forms (C2 and P21 space groups) of CBG were obtained; in both forms one molecule of acetyl‐CoA (AcCoA) was bound to the N‐terminal GNAT domain, with the C‐terminal domain being unoccupied by a ligand. Mass spectrometric analyzes on CBG demonstrate that, in addition to one strongly bound AcCoA molecule, a second acyl‐CoA molecule can bind to CBG. Succinyl‐CoA and myristoyl‐CoA displayed the strongest binding to the “second” CoA binding site, which is likely in the C‐terminal GNAT domain. Analysis of the CBG structures, together with those of other tandem GNAT proteins, suggest that the AcCoA in the N‐terminal GNAT domain plays a structural role whereas the C‐terminal domain is more likely to be directly involved in acetyl transfer. The available crystallographic and mass spectrometric evidence suggests that binding of the second acyl‐CoA occurs preferentially to monomeric rather than dimeric CBG. The N‐terminal AcCoA binding site and the proposed C‐terminal acyl‐CoA binding site of CBG are compared with acyl‐CoA binding sites of other tandem and single domain GNAT proteins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
    
The present study investigated the protective effect of gossypol, selenium, zinc, or glutathione (GSH) against dimethylnitrosamine (DMN)‐induced hepatotoxicity in the livers of male mice. The expression and the activity of glutathione S‐transferase (GST), levels of GSH, and free radicals (malondialdehyde (MDA)), as well as the activity of glutathione reductase were determined after the treatment of mice for seven consecutive days with low or high doses of gossypol, selenium, zinc, or GSH. In experimental groups, DMN was administered as a single dose for 2 h after the repeated dose treatments of mice for seven consecutive days with each antioxidant. DMN reduced the expression and inhibited the activity of GST. However, repeated treatments of mice with low‐dose gossypol or high dose of either selenium or GSH followed by a single dose of DMN induced the expression and the activity of GST. In contrast, low‐dose treatments of mice with zinc, selenium, or GSH followed by a single dose of DMN reduced the expression and the activity of GST compared to either control or DMN‐treated groups. In addition, high‐dose treatment with either gossypol or selenium markedly induced the levels of GSH compared to either control or DMN‐treated groups. Interestingly, pretreatment of mice with high dose of either gossypol or selenium for seven consecutive days followed by a single dose of DMN decreased the levels of MDA, whereas DMN induced such levels. It is concluded that high dose of either gossypol or selenium is a stronger protector than zinc and GSH in ameliorating the toxic effects of DMN. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:389–395, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20255  相似文献   

16.
The expression of intron‐containing genes in eukaryotes requires generation of protein‐coding messenger RNAs (mRNAs) via RNA splicing, whereby the spliceosome removes non‐coding introns from pre‐mRNAs and joins exons. Spliceosomes must ensure accurate removal of highly diverse introns. We show that Sde2 is a ubiquitin‐fold‐containing splicing regulator that supports splicing of selected pre‐mRNAs in an intron‐specific manner in Schizosaccharomyces pombe. Both fission yeast and human Sde2 are translated as inactive precursor proteins harbouring the ubiquitin‐fold domain linked through an invariant GGKGG motif to a C‐terminal domain (referred to as Sde2‐C). Precursor processing after the first di‐glycine motif by the ubiquitin‐specific proteases Ubp5 and Ubp15 generates a short‐lived activated Sde2‐C fragment with an N‐terminal lysine residue, which subsequently gets incorporated into spliceosomes. Absence of Sde2 or defects in Sde2 activation both result in inefficient excision of selected introns from a subset of pre‐mRNAs. Sde2 facilitates spliceosomal association of Cactin/Cay1, with a functional link between Sde2 and Cactin further supported by genetic interactions and pre‐mRNA splicing assays. These findings suggest that ubiquitin‐like processing of Sde2 into a short‐lived activated form may function as a checkpoint to ensure proper splicing of certain pre‐mRNAs in fission yeast.  相似文献   

17.
    
The development of new antibiotics is necessitated by the rapid development of resistance to current therapies. UDP‐N‐acetylglucosamine enolpyruvyl transferase (MurA), which catalyzes the first committed step of bacterial peptidoglycan biosynthesis, is a prime candidate for therapeutic intervention. MurA is the target of the antibiotic fosfomycin, a natural product produced by Streptomyces. Despite possessing a high degree of sequence conservation with MurA enzymes from fosfomycin‐susceptible organisms, recent microbiological studies suggest that MurA from Vibrio fischeri (VfiMurA) may confer fosfomycin resistance via a mechanism that is not yet understood. The crystal structure of VfiMurA in a ternary complex with the substrate UDP‐N‐acetylglucosamine (UNAG) and fosfomycin has been solved to a resolution of 1.93 Å. Fosfomycin is known to inhibit MurA by covalently binding to a highly conserved cysteine in the active site of the enzyme. A comparison of the title structure with the structure of fosfomycin‐susceptible Haemophilus influenzae MurA (PDB entry 2rl2 ) revealed strikingly similar conformations of the mobile substrate‐binding loop and clear electron density for a fosfomycin–cysteine adduct. Based on these results, there are no distinguishing sequence/structural features in VfiMurA that would translate to a diminished sensitivity to fosfomycin. However, VfiMurA is a robust crystallizer and shares high sequence identity with many clinically relevant bacterial pathogens. Thus, it would serve as an ideal system for use in the structure‐guided optimization of new antibacterial agents.  相似文献   

18.
19.
    
A novel approach to sequentially degrade peptoid N‐terminal N‐(substituted)glycine residues on the solid‐phase using very mild conditions is reported. This method relies on the treatment of resin‐bound, bromoacetylated peptoids with silver perchlorate in THF, leading to an intramolecular cyclization reaction to liberate the terminal residue as a N‐substituted morpholine‐2,5‐dione, resulting in a truncated peptoid upon hydrolysis and a silver bromide byproduct. Side‐chain functional group tolerance is explored and reaction kinetics are determined. In a series of pentapeptoids possessing variable, non‐nucleophilic side‐chains at the second position (R2), we demonstrate that sequential N‐terminal degradation of the first two residues proceeds in 87% and 74% conversions on average, respectively. We further demonstrate that the degradation reaction is selective for peptoids, and represents substantial progress toward a mild, iterative sequencing method for peptoid oligomers. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 726–736, 2016.  相似文献   

20.
Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3′ aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNALeu (anticodon 5′-CAG-3′) isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNALeu (CAG)—a G3:C70 base pair and a set of 4 nt (C72, A4:U69, C68)—that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号