首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish‐containing lakes (n = 18) of similar size, location and maximum depth. We used non‐metric multidimensional scaling to assess differences in community structure and t‐tests for taxon‐specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish‐containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish‐containing lakes, especially taxa that are large, active and free‐swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation.  相似文献   

2.
Predicting the locations of naturally fishless lakes   总被引:1,自引:1,他引:0  
1. Fish have been introduced into many previously fishless lakes throughout North America over the past 100+ years. It is difficult to determine the historical distribution of fishless lakes, however, because these introductions have not always been well‐documented. 2. Due to its glacial history and low human population density, the state of Maine (U.S.A.) may host the greatest number of naturally fishless lakes in the northeastern United States. However, less than one‐quarter of Maine’s 6000+ lakes have been surveyed for fish presence, and no accurate assessments of either the historical or current abundance and distribution of fishless lakes exist. 3. We developed methods to assess the abundance and distribution of Maine’s naturally fishless lakes (0.6–10.1 ha). We hypothesized that the historical distribution of fishless lakes across a landscape is controlled by geomorphic and geographic conditions. 4. We used ArcGIS to identify landscape‐scale geomorphic and geographic factors (e.g. connectivity, surrounding slope) correlated with fish absence in two geomorphic regions of Maine – the western and interior mountains and the eastern lowlands and foothills. By using readily available geographic information systems data our method was not limited to field‐visited sites. We estimated the likelihood that a particular lake is fishless with a stepwise logistic regression model developed for each region. 5. The absence of fish from western lakes is related to altitude (+), minimum percent slope in the 500 m buffer (+), maximum percent slope in the 500 m buffer (+) and percent cover of herbaceous‐emergent wetland in 1000 m buffer (?). The absence of fish from eastern lakes is related to the lack of a stream within 50 m of the lake. 6. The models predict that a total of 4% (131) of study lakes in the two regions were historically fishless, with the eastern region hosting a greater proportion than the western region. 7. We verified the model predictions with two complementary approaches. First we visited 21 lakes predicted to be fishless and assessed current fish presence with gillnetting. Second, we used paleolimnological techniques based on the abundance of Chaoborus americanus mandibles in the bottom segments of sediment cores. Fifteen of the 21 lakes predicted to be fishless currently contain fish. Paleolimnological evidence, however, suggests that nine of the 15 lakes were historically fishless and thus were subject to undocumented fish introductions. 8. Our approach efficiently predicts the distribution Maine’s naturally fishless lakes, and our results indicate that these habitats have declined due to fish introductions. Our method could be applied to other regions with similar geographic and geomorphic constraints on fish distributions as a tool to enhance conservation of a limited resource that provides habitat for unique biological communities.  相似文献   

3.
We examined the behavior of common loons, Gavia immer (Brünnich), breeding on small, shallow lakes in central Alberta, Canada that were naturally fishless or contained only small-bodied fishes (minnow lake). For both lake types, adults spent >90% of their time on the nesting lake and >50% of their time foraging. Adult loons on fishless lakes dove more frequently, but dives were of shorter duration than loons on lakes with fish. On two intensively studied fishless lakes, adults fed chicks macroinvertebrates, particularly leeches, whereas on a focal minnow lake, fish made up >70% of prey items delivered by adults. Chicks >36 days of age on a minnow lake spent >50% of their time foraging, whereas older chicks on fishless lakes were highly dependent on food provisioning by adults. Models based on observed foraging patterns indicated that prey size was a better predictor of success in meeting energetic requirements than was feeding behavior (e.g., dive rate, dive success). For most models, estimated energetic intake was higher for loons on minnow lakes than on fishless lakes. Our behavioral observations and model results are consistent with surveys in central Alberta that indicate that breeding Common Loons frequently establish territories on small lakes, but that chicks hatched on lakes completely lacking fish rarely fledge and only if sufficient large invertebrates such as leeches are available.  相似文献   

4.
Aquatic insect assemblages were sampled in 2 sets of 18 small lakes in 2 regions of northeastern Ontario. Both sets included lakes with and without fish. In the set near Sudbury, fishless lakes were acidic. Using a standardized sweep net procedure, fishless lakes in both areas were found to have a greater abundance and richness of insects than lakes with fish. Irrespective of pH, fishless lakes supported a similar aquatic insect assemblage which was characterized by an abundance of nekton, especially Notonectidae, Corixidae, Graphoderus liberus (Dytiscidae) and Chaoborus americanus (Chaoboridae). Those taxa were typically absent from lakes with fish, which often had a marked abundance of Gerridae. It is concluded that fish predation is the most immediate factor structuring such aquatic insect assemblages, and is responsible for their change coincident with lake acidification.  相似文献   

5.
Quantifying the role of spatial patterns is an important goal in ecology to further understand patterns of community composition. We quantified the relative role of environmental conditions and regional spatial patterns that could be produced by environmental filtering and dispersal limitation on fish community composition for thousands of lakes. A database was assembled on fish community composition, lake morphology, water quality, climatic conditions, and hydrological connectivity for 9885 lakes in Ontario, Canada. We utilized a variation partitioning approach in conjunction with Moran's Eigenvector Maps (MEM) and Asymmetric Eigenvector Maps (AEM) to model spatial patterns that could be produced by human‐mediated and natural modes of dispersal. Across 9885 lakes and 100 fish species, environmental factors and spatial structure explained approximately 19% of the variation in fish community composition. Examining the proportional role of spatial structure and environmental conditions revealed that as much as 90% of the explained variation in native species assemblage composition is governed by environmental conditions. Conversely on average, 67% of the explained variation in non‐native assemblage composition can be related to human‐mediated dispersal. This study highlights the importance of including spatial structure and environmental conditions when explaining patterns of community composition to better discriminate between the ecological processes that underlie biogeographical patterns of communities composed of native and non‐native fish species.  相似文献   

6.
The anticipated impacts of climate change on aquatic biota are difficult to evaluate because of potentially contrasting effects of temperature and hydrology on lake ecosystems, particularly those closed‐basin lakes within semiarid regions. To address this shortfall, we quantified decade‐scale changes in chemical and biological properties of 20 endorheic lakes in central North America in response to a pronounced transition from a drought to a pluvial period during the early 21st century. Lakes exhibited marked temporal changes in chemical characteristics and formed two discrete clusters corresponding to periods of substantially different effective moisture (as Palmer Drought Severity Index, PDSI). Discriminant function analysis (DFA) explained 90% of variability in fish assemblage composition and showed that fish communities were predicted best by environmental conditions during the arid interval (PDSI 相似文献   

7.
1. Classification of European lake fish assemblages can be based on fish‐assemblage structure or morphological, geographical, physical and chemical lake attributes. However, substantial gaps in knowledge exist with respect to the correspondence between both classification approaches. 2. Here, we compiled fish assemblage data from 165 lakes situated in the European ‘Central Plains’ ecoregion. Cluster analysis of fish abundances was performed to compare fish assemblage types of the entire ecoregion with those from previous country‐specific studies. Nonparametric group comparisons, classification trees and partial canonical ordinations were used to infer the correspondence between fish assemblage types and morphology, geographical position and nutrient concentration of the lakes. 3. Three distinct fish assemblages were revealed: vendace (Coregonus albula), ruffe (Gymnocephalus cernuus) and roach (Rutilus rutilus) lake types. Both latitude and lake depth were the best determinants of lake type, but total phosphorus (TP) concentrations were also important. Vendace lakes were deep and had low TP concentrations, whereas the shallower ruffe and roach lakes had higher TP values. Roach lakes were more frequent in the north‐west area of the ecoregion, whereas ruffe lakes were more often found south of the Baltic Sea. 4. Controlling for the influence of nutrient concentration showed that lake morphology and geographical position were important determinants of fish assemblages. However, the variance explained was low (<20%), implying that biological interactions may also be important in forming the lake‐specific fish assemblages. 5. The results suggest that fish assemblages differ between deep and shallow lakes, and between the north‐west and south‐east locations within the Central Plains ecoregion. Accordingly, establishment of depth‐related lake morphotypes is needed, and the European ecoregions recommended to be used in evaluation systems according to the Water Framework Directive seem to be too coarse to reflect the subtle differences of fish species richness along geographical gradients.  相似文献   

8.
Presence of fish affects lake use and breeding success in ducks   总被引:1,自引:0,他引:1  
Several previous studies indicate that presence of fish has negative effects on waterbirds breeding on lakes, owing either to competition for common invertebrate prey or fish predation on ducklings/chicks. However, others have reported results to the contrary and it remains unresolved what factors trigger, inhibit, and modulate fish–waterbird interactions. The present study was designed to test the effect of fish presence per se, with a minimum of variation in possibly confounding environmental variables. Thus, after stratifying for area, depth, altitude, pH, and total phosphorus we compared 13 lakes with and 12 without fish (mainly pike Esox lucius and perch Perca fluviatilis) with respect to (i) general species richness of waterbirds, (ii) species-specific utilization and breeding success of two dabbling ducks (mallard Anas platyrhynchos and teal Anas crecca) and a diving duck (goldeneye Bucephala clangula). General species richness of waterbirds was higher on fishless lakes. Overall use (bird days) and brood number of teal and goldeneye were higher on fishless lakes. The latter also had more benthic and free-swimming prey invertebrates compared to lakes with fish. Mallard use, mallard brood number, and abundance of emerging insects did not differ between lake groups. Generalized linear models including fish presence as factor and considering seven environmental variables as covariates, confirmed that all waterbird variables except mallard days and broods were negatively correlated to fish presence. There was also a residual positive relationship of lake area on general species richness, teal days, and teal broods. Our data demonstrate a stronger effect of fish presence on diving ducks and small surface feeding ducks than on large surface-feeding ducks. We argue that observed patterns were caused by fish predation on ducks rather than by fish–duck competition for common prey.  相似文献   

9.
Introduced trout have often been implicated in the decline of high-mountain amphibian populations, but few studies have attempted to understand whether fish stocking also influences the distribution and abundance of amphibians throughout entire mountain basins, including the remaining fishless lakes. We examined this relationship using the relative abundance of long-toed salamanders (Ambystoma macrodactylum) and Columbia spotted frogs (Rana luteiventris) in fish-containing and fishless lentic sites in basins with varying levels of historic fish stocking. All lentic waters were surveyed for fish and amphibians in 11 high-elevation basins in the Frank Church-River of No Return Wilderness, Idaho, between 1994 and 1999. We found introduced trout (Oncorhynchus clarki, O. mykiss, O. m. aguabonita) in 43 of the 101 sites, representing 90% of the total surface area of lentic water bodies available. At the scale of individual water bodies, after accounting for differences in habitat characteristics between fish-containing and fishless sites, the abundance of amphibians at all life stages was significantly lower in lakes with fish. At the basin scale, densities of overwintering life stages of amphibians were lower in the fishless sites of basins where more habitat was occupied by trout. Our results suggest that many of the remaining fishless habitats are too shallow to provide suitable breeding or overwintering sites for these amphibians and that current trout distributions may eventually result in the extirpation of amphibian populations from entire landscapes, including sites that remain in a fishless condition. Received 28 March 2000;Accepted 2 January 2001.  相似文献   

10.
Behavior can play a mediating role in determining the selective pressures that influence the evolution of morphological structures. To examine this, I quantified patterns of morphological variation among larvae of Enallagma damselfly species (Odonata: Coenagrionidae) that use different behaviors to avoid the major predators found in each of two communities, lakes with and without fish. Specifically, I quantified the sizes and shapes of the abdomens and caudal lamellae (used for swimming) and legs for three species from fishless lakes and six species from lakes with fish. A preliminary cladistic analysis indicates that species within each lake type are not members of a single clade, which supports the conclusions of previous odonate taxonomists. Previous studies have shown that species in fishless lakes are very active, running and swimming frequently and at high rates of speed in the absence of predators, and they avoid their primary predators, large dragonflies, by swimming. These species have the widest abdomens, the largest caudal lamellae relative to overall body size, and the longest legs of the species studied, which should make them powerful swimmers and runners. Furthermore, species in fishless lakes are morphologically very similar to one another and differ greatly from fish-lake species, although each is more closely related to species in fish lakes. In contrast, species from lakes with fish move very slowly and infrequently in the absence of predators and do not attempt to evade attacking predators. However, despite their behavioral similarity, large interspecific variation in morphology exists among the fish-lake species, and the only morphological patterns were differences associated with membership in the two primary clades identified in the cladistic analysis. A modification of Felsenstein's (1985) method of evolutionary contrasts which allows character change to be isolated along single branches is introduced and is used to reconstruct the evolutionary histories of these characters. This analysis suggests that large increases in caudal lamella size, abdominal segment lengths and widths, and leg length accompany speciation events associated with habitat shifts from fish-lakes to fishless lakes. Following habitat shifts selection pressures exerted by dragonfly predation apparently favored swimming as an escape tactic, which mediated selection pressures onto morphologies used in swimming to increase swimming performance; morphological patterns in extant species reflect this adaptation to a new environment. Mechanisms by which behaviorally mediated selection could have accelerated evolutionary dynamics following founder events are discussed.  相似文献   

11.
12.
Densities of Corixidae (Hemiptera), larval Odonata, and large larval Trichoptera were estimated in the littoral zone of small lakes in an acid-stressed area near Sudbury, Ontario. Fish were present in some lakes and absent in others, and fishless lakes occurred across a wide range of pH. Corixidae were significantly more abundant in lakes without fish than in lakes with fish, and their numbers were not related to the pH of fishless lakes. Anisoptera (Odonata) larvae tended to be more numerous in benthic samples from fishless lakes than from lakes with fish, and their exuviae were significantly more abundant around fishless lakes. In most lakes, the assemblage was dominated by three species; Leucorrhinia glacialis, Libellula julia, and Cordulia shurtleffi. In lakes containing white sucker, Catostomus commersoni, Gomphus spp. were most numerous. In the most acid fishless lakes, L. julia was uncommon, and L. glacialis was extremely abundant. In fishless lakes, numbers of Anisoptera larvae and exuviae were negatively correlated with pH, though species richness was positively correlated with pH. Exuviae of Zygoptera (Odonata) were more abundant around fishless lakes, irrespective of pH. Larvae of Limnephilus (Trichoptera) were most abundant in non-acid fishless lakes, and absent at pH<5.2. Abundances of Banksiola (Trichoptera) were negatively correlated with the pH of fishless lakes.  相似文献   

13.
Small, shallow lakes and ponds are often the dominant landscape features in many regions, but are comparably less studied than larger lakes. Shallow lakes are more likely to lack fish populations; however, it is often difficult to ascertain whether these sites were naturally fishless or lost their fish populations due to anthropogenic or natural stressors. We examined the distributional abundances of four Chaoborus species by identifying and enumerating their larval mandibles in the surface sediments of 146 randomly selected lakes from northwestern Ontario, Canada, to determine the key environmental gradients influencing chaoborid distributions. Chaoborus mandibles were encountered at 110 lakes and, in 65% of those lakes, total counts were ≥10. Direct gradient analyses were then used to show that lakewater total aluminum concentrations (negatively correlated with pH), lakewater sodium concentrations, lake surface area, and maximum water depth were significant predictors of the distributional abundances of Chaoborus. Generalized linear models indicated that Chaoborus species varied in their responses to significant environmental factors. C. (Sayomyia) was not significantly associated with any environmental variable and the abundances of larger chaoborids may be an important biotic factor affecting this taxon. Chaoborus americanus, an indicator of fishless lakes, was significantly correlated with all five key variables and demonstrated a clear threshold of occurrence in relatively small lakes (i.e., <10 ha in surface area). Furthermore, based on the occurrence and abundance of C. americanus, we estimated that 20% of the lakes we surveyed are currently fishless. These lakes significantly differ in several geomorphic and water-chemistry measures compared to the other study lakes.  相似文献   

14.
Patterns of fish species richness in China's lakes   总被引:1,自引:0,他引:1  
Aim To document the patterns of fish species richness and their possible causes in China's lakes at regional and national scales. Location Lakes across China. Methods We compiled data of fish species richness, limnological characteristics and climatic variables for 109 lakes across five regions of China: East region, Northeast region, Southwest region, North‐Northwest region, and the Tibetan Plateau. Correlation analyses, regression models and a general linear model were used to explore the patterns of fish species richness. Results At the national scale, lake altitude, energy availability (potential evapotranspiration, PET) and lake area explained 79.6% of the total variation of the lake fish species richness. The determinants of the fish richness pattern varied among physiographic regions. Lake area was the strongest predictor of fish species richness in the East and Southwest lakes, accounting for 22.2% and 82.9% of the variation, respectively. Annual PET explained 68.7% of the variation of fish richness in the Northeast lakes. Maximum depth, mineralization degree, and lake area explained 45.5% of the fish variation in the lakes of the North‐Northwest region. On the Tibetan Plateau, lake altitude was the first predictor variable, interpreting 32.2% of the variation. Main conclusions Lake altitude was the most important factor explaining the variation of fish species richness across China's lakes, and accounted for 74.5% of the variation. This may stem in part from the fact that the lakes investigated in our study span the largest altitudinal range anywhere in the world. The effects of the lake altitude on fish species richness can be separated into direct and indirect aspects due to its collinearity with PET. We also found that the fish diversity and its determinants were scale‐dependent. Fish species richness was probably energy‐determined in the cold region, while it was best predicted by the lake area in the relatively geologically old region. The independent variables we used only explained a small fraction of the variations in the lake fish species richness in East China and the Tibetan Plateau, which may be due to the effects of human activity and historical events, respectively.  相似文献   

15.
Fish introduction is a major threat to alpine lake biota leading to the loss of native species and to the degeneration of natural food-webs. This study provides an extensive investigation on the impact of the introduced fish Salvelinus fontinalis on the native communities of alpine lakes in the Gran Paradiso National Park. We compared the macroinvertebrate and zooplankton communities of six stocked and nine fishless lakes with a repeated sampling approach during the summers 2006–2009. The impact of fish presence on alpine lake fauna is often mediated by the strong seasonality governing these ecosystems, and it dramatically affects the faunal assemblage of littoral macroinvertebrates and the size, structure, and composition of the pelagic zooplankton community with a strong selective predation of the more visible taxa. Direct ecological impacts include a decrease or extinction of non-burrower macroinvertebrates and of large zooplankton species, while small zooplankton species and burrower macroinvertebrates were indirectly advantaged by fish presence. Due to the existence of a compensation between rotifers and crustaceans, fish presence does not affect total zooplankton biomass and diversity even if fish are a factor of ecological exclusion for large crustaceans. These compensatory mechanisms are a key process surrounding the impact of introduced fish in alpine lakes.  相似文献   

16.
The aim of this study was to examine the combined effect of water transparency and narrow macrophyte belts on zooplankton assemblages in two oxbow lakes (Krapina River, Croatia). Samples were collected in open water and among helophytes in the littoral zone from April until September 2008. Rotifers were the most abundant group of zooplankton in both lakes, and dominated in the Krapina oxbow lake 1 (KO1). Lake KO1 had significantly lower transparency, lower percentage macrophyte cover and higher chlorophyll a concentration than Krapina oxbow lake 2 (KO2). In lake KO1, variation in the horizontal distribution of cladocerans and rotifers in terms of their abundance seemed to be determined by competition between Bosmina longirostris and Keratella cochlearis, initiated by oscillation in transparency and detritus availability. In lake KO2, with higher transparency and higher percentage macrophyte cover, the abundance of small‐ and large‐bodied cladocerans increased in the littoral zone simultaneously with higher transparency, suggesting fish predation. Results of this study indicated that small differences in transparencies between the two lakes caused significant differences in horizontal distribution of the zooplankton assemblage. Even narrow helophyte belts offered a refuge to zooplankton, although lower transparencies reduced the effectiveness of macrophytes as a refuge from predators. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
19.
Aim  To assess the relative impacts of spatial, local environmental and habitat connectivity on the structure of aquatic macrophyte communities in lakes designated for their conservation value. Location  Selected lakes of conservation importance all over Scotland, representing a wide variety of lake habitat types and associated macrophyte communities. Methods  Local environmental variables and species occurrence were measured in the field. Spatial variables were generated using principal coordinates of neighbour matrices (PCNM) analysis. Connectivity between each lake and its neighbours was defined as either (i) all lakes within a radius of 5, 10, 25, 50, 75 or 100 km; (ii) all lakes in same river system; or (iii) all lakes in the same catchment and upstream of the lake. Using variance partitioning within canonical correspondence analysis, the relative impact of E = local environment, S = space and C = lake connectivity was compared on submerged (n = 119 lakes) and emergent (n = 96 lakes) macrophyte assemblages. Results  Local environmental conditions, such as total phosphorus, alkalinity/conductivity and the presence of invasive species, as well as spatial gradients were key drivers of observed variation in macrophyte communities; e.g., for submerged macrophytes, a combination of local to moderate factors relating to water chemistry and broad‐scale gradients reflecting elevation and climate are important. Spatially structured environmental variables explained a large portion of observed variation. Main conclusions  Our findings confirmed the need to manage local environmental pressures such as eutrophication, but suggested that the traditional catchment approach was insufficient. The spatial aggregation of environmental and connectivity factors indicated that a landscape scale approach should be used in lake management to augment the risk assessment to conservation species from the deterioration of suitable lake sites over broad biogeographic areas.  相似文献   

20.
1. Fish and ducks often belong to the same local food web, and several studies indicate that there is a general negative effect of fish on breeding ducks. This pattern has so far been addressed mainly within the framework of competition for common invertebrate prey, while predation by large fish as a force behind settlement and abundance patterns in ducks remains largely unknown. This is the first study to address the effect of fish predation on breeding ducks, isolated from that of competition, and the first experiment to explore the ability of ducks to identify and avoid lakes with high risk of fish predation. 2. We used a before–after control–impact design and 11 naturally fishless lakes. Waterfowl on the lakes were surveyed during the breeding season of 2005. Large adult pike (Esox lucius) were added to two lakes in early spring 2008, and waterfowl surveys were repeated on all 11 lakes. 3. Pike introduction did not affect the number of pairs on lakes during the nesting season in any of three focal duck species (mallard Anas platyrhynchos, teal Anas crecca, and goldeneye Bucephala clangula). During the brood‐rearing season, however, there was a decrease in duck days in teal and goldeneye in lakes with pike, with similar trends observed in mallard. The number of goldeneye ducklings was also significantly lower in lakes with pike. We were unable to determine whether the response was attributable to direct pike predation or to broods leaving experimental lakes, but in either case, our study demonstrates high fitness costs for ducks breeding on lakes with pike. 4. The apparent inability of nesting ducks to detect pike and the clear fitness implications may influence the annual recruitment of ducks on a larger scale as pike are both common and widespread. Vegetation complexity and food abundance are likely to be of overriding importance when breeding ducks are choosing a nesting site. As pike have a strong influence on breeding birds, relying on vegetation and cues of food abundance, while ignoring indicators of predation risk from fish, could lead to lakes with pike acting as an ecological trap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号