首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na+ effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na+ uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate‐dependent transport systems in series that take up and load Na+ into the xylem constitute the major pathway for the accumulation of Na+ in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na+ accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate‐dependent Na+ transport. Arabidopsis plants exposed to an osmotic potential of ?1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na+ could not be accumulated. In contrast, in NaCl the plants that accumulated Na+ lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na+ uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long‐term toxicity.  相似文献   

3.
Summary The relationships between intracellular sodium content, sodium transport and serum effects were investigated in human fibroblasts. In the cells with low intracellular sodium (Na iL /+ ;0.04 mol sodium/mg protein) serum stimulated the sodium-potassium pump as measured by ouabain-sensitive sodium efflux and rubidium influx and also exerted a transstimulation of ouabain-insensitive sodium transport resulting in net influx. In cells with high intracellular sodium (Na iH /+ ;0.42 mol sodium/mg protein) all aspects of sodium transport were increased compared to Na iL /+ cells. In these cells serum caused no change in sodium-potassium pump activity but significantly increased the ouabain-insensitive sodium fluxes resulting in net efflux. In Na iL /+ cells, serum promoted net sodium influx through an amiloride-sensitive pathway that was undetectable in the basal state. In Na iH /+ cells the serum-stimulated net efflux was amiloride sensitive but this pathway also contributed to a major portion of sodium transport in the basal state. This study demonstrated that sodium-potassium pump activity is directed by the supply of internal sodium and that serum can increase this supply by promoting net influx, and that serum-induced sodium transport can be modified by intracellular sodium content.  相似文献   

4.
A. R. Yeo 《Plant and Soil》1992,146(1-2):109-116
Sodium transport in rice is characterised by large variability between individual plants, and large environmental interaction. As a result of these two factors, plant sodium content is a continuous variable which is not distributed normally. This applies both to the quantity of sodium in the plant and to the concentration of sodium on a unit fresh or dry weight basis. This variability is in part because the transpirational by-pass flow, dependent upon root anatomy and development, contributes to sodium uptake. Variability in sodium content within designated cultivars is heritable and line selections diverge during recurrent selection, suggesting that selection is working on residual heterozygosity rather than on a family of homozygous lines. Varieties differ in average sodium uptake into the plant but the direct correlation of this with survival is weak. This is because other independent characters are important (and these have not been combined by natural selection nor by chance) and because overall performance is confounded by the spurious advantage of the tall (non-dwarf) plant type. This advantage is spurious because much of it is due to plant size rather than to any genetic information for salt tolerance. The benefit deriving from plant size will not be heritable in crosses with genotypes of the improved (dwarf), high-yielding plant type because the dwarfing genes are dominant. Sodium transport is heritable in crosses, and the results presented show that both low sodium transport and low sodium to potassium ratio can be selected independently of plant type. This allows the selection of dwarf plants (which are agronomically desirable) with low sodium transport (which will improve salt tolerance).  相似文献   

5.
ABC transporters involved in the transport of plant secondary metabolites   总被引:10,自引:0,他引:10  
Yazaki K 《FEBS letters》2006,580(4):1183-1191
Plants produce a large number of secondary metabolites, such as alkaloids, terpenoids, polyphenols, quinones and many further compounds having combined structures of those groups. Physiological roles of those metabolites for plants are still under investigation, but they play, at least in part, important functions as protectants for plant bodies against herbivores and pathogens, as well as from physical stresses like ultraviolet light and heat. In order to accomplish these functions, biosyntheses and accumulation of secondary metabolites are highly regulated in a temporal and spatial manner in plant organs, where they can appropriately accumulate. In this mini-review, I introduce the mechanism of accumulation and membrane transport of these metabolites, in particular, focusing on ATP-binding cassette transporters involved.  相似文献   

6.
A plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4‐overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild‐type plants following salt stress. We show higher HKT1;1 expression in abi4 mutant plants and lower levels of expression in ABI4‐overexpressing plants, resulting in reduced accumulation of sodium ions in the shoot of abi4 mutants. HKT1;1 encodes a sodium transporter which is known to unload sodium ions from the root xylem stream into the xylem parenchyma stele cells. We have shown recently that ABI4 is expressed in the root stele at various developmental stages and that it plays a key role in determining root architecture. Thus ABI4 and HKT1;1 are expressed in the same cells, which suggests the possibility of direct binding of ABI4 to the HKT1;1 promoter. In planta chromatin immunoprecipitation and in vitro electrophoresis mobility shift assays demonstrated that ABI4 binds two highly related sites within the HKT1;1 promoter. These sites, GC(C/G)GCTT(T), termed ABI4‐binding element (ABE), have also been identified in other ABI4‐repressed genes. We therefore suggest that ABI4 is a major modulator of root development and function.  相似文献   

7.
8.
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd2+ tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd2+ accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd2+ accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd2+ translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd2+ tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd2+ transport.  相似文献   

9.
A yeast strain carrying disruptions in TRK1 and ENA genes was very sensitive to Na+ because uptake discriminated poorly between K+ and Na+, and Na+ efflux was insignificant. Transformation with TRK1 and ENA1 restored discrimination, Na+ efflux and Na+ tolerance. Increasing external Ca2+ increased Na+ tolerance almost in the same proportion in TRK1 enal cells and in trkl ENAI cells, suggesting an unspecific effect of this cation. By using a vacuolar ATPase mutant, the role of the vacuole in Na+ tolerance was also demonstrated. The yeast model of Na+ exclusion and Na+ tolerance may be extended to plants.  相似文献   

10.
Pseudometallophytes are commonly used to study the evolution of metal tolerance and accumulation traits in plants. Within the Arabidopsis genus, the adaptation of Arabidopsis halleri to metalliferous soils has been widely studied, which is not the case for the closely related species Arabidopsis arenosa. We performed an in-depth physiological comparison between the A. halleri and A. arenosa populations from the same polluted site, together with the geographically close non-metallicolous (NM) populations of both species. The ionomes, growth, photosynthetic parameters and pigment content were characterized in the plants that were growing on their native site and in a hydroponic culture under Cd treatments. In situ, the metallicolous (M) populations of both species hyperaccumulated Cd and Zn. The NM population of A. halleri hyperaccumulated Cd and Zn while the NM A. arenosa did not. In the hydroponic experiments, the NM populations of both species accumulated more Cd in their shoots than the M populations. Our research suggests that the two Arabidopsis species evolved different strategies of adaptation to extreme metallic environments that involve fine regulation of metal homeostasis, adjustment of the photosynthetic apparatus and accumulation of flavonols and anthocyanins.  相似文献   

11.
Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1–GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt‐sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na+/H+ antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild‐type controls, nhd1 T–DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na+ levels similar to those of wild‐type plants, but the Na+ content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non‐photochemical quenching. Moreover, high Na+ levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.  相似文献   

12.
RAB GTPases are key regulators of membrane traffic. Among them, RAB11, a widely conserved sub‐group, has evolved in a unique way in plants; plant RAB11 members show notable diversity, whereas yeast and animals have only a few RAB11 members. Fifty‐seven RAB GTPases are encoded in the Arabidopsis thaliana genome, 26 of which are classified in the RAB11 group (further divided into RABA1–RABA6 sub‐groups). Although several plant RAB11 members have been shown to play pivotal roles in plant‐unique developmental processes, including cytokinesis and tip growth, molecular and physiological functions of the majority of RAB11 members remain unknown. To reveal precise functions of plant RAB11, we investigated the subcellular localization and dynamics of the largest sub‐group of Arabidopsis RAB11, RABA1, which has nine members. RABA1 members reside on mobile punctate structures adjacent to the trans‐Golgi network and co‐localized with VAMP721/722, R‐SNARE proteins that operate in the secretory pathway. In addition, the constitutive‐active mutant of RABA1b, RABA1bQ72L , was present on the plasma membrane. The RABA1b ‐containing membrane structures showed actin‐dependent dynamic motion . Vesicles labeled by GFP–RABA1b moved dynamically, forming queues along actin filaments. Interestingly, Arabidopsis plants whose four major RABA1 members were knocked out, and those expressing the dominant‐negative mutant of RABA1B, exhibited hypersensitivity to salinity stress. Altogether, these results indicate that RABA1 members mediate transport between the trans‐Golgi network and the plasma membrane, and are required for salinity stress tolerance.  相似文献   

13.
The effects of Ca2+ and cell turgor on Na+ influx were examined in two charophytes, lamprothamnium papulo-SUM (salt-tolerant) and Chara corallina (salt-sensitive), to try to identify causes of salinity toxicity. Mortality was associated with Na+ influx, with the two species showing similar sensitivities to high Na+ influx. In Lamprothamnium, toxic influxes of Na+ occurred at much higher external Na+ concentrations than in Chara. The differences in Na+ influx at the same Na+ concentration were not due to different responses to external Ca2+. Lamprothamnium adjusts its turgor in response to increasing NaCl whereas Chara cannot. In solutions of KC1 up to at least 200 mol m-3, however, Chara regulated turgor, and when KC1 was subsequently replaced with NaCl, Na+ influx was low and similar to that in Lamprothamnium at the same Na* concentration. Chara cells which were not turgor-adjusted in KCI had Na+ influxes 2-5-fold higher than the turgid cells. Thus, it appears that turgor is a major determinant of Na+ influx, and therefore of cell survival. We found no evidence that the mechanism of Na+ influx in Chara is different from that in Lamprothamnium. Higher susceptibility of Chara to NaCl seems to result from inability to regulate turgor, in turn leading to toxic Na+ influx.  相似文献   

14.
With the aim of determining whether grafting could improve salinity tolerance of tomato (Lycopersicon esculentum Mill.), and what characteristics of the rootstock were required to increase the salt tolerance of the shoot, a commercial tomato hybrid (cv. Jaguar) was grafted onto the roots of several tomato genotypes with different potentials to exclude saline ions. The rootstock effect was assessed by growing plants at different NaCl concentrations (0, 25, 50, and 75 mM NaCl) under greenhouse conditions, and by determining the fruit yield and the leaf physiological changes induced by the rootstock after 60 d and 90 d of salt treatment. The grafting process itself did not affect the fruit yield, as non-grafted plants of cv. Jaguar and those grafted onto their own root showed the same yield over time under non-saline conditions. However, grafting raised fruit yield in Jaguar on most rootstocks, although the positive effect induced by the rootstock was lower at 25 mM NaCl than at 50 and 75 mM NaCl. At these higher levels, the plants grafted onto Radja, Pera and the hybrid VolgogradskijxPera increased their yields by approximately 80%, with respect to the Jaguar plants. The tolerance induced by the rootstock in the shoot was related to ionic rather than osmotic stress caused by salinity, as the differential fruit yield responses among graft combinations were mainly related to the different abilities of rootstocks to regulate the transport of saline ions. This was corroborated by the high negative correlation found between fruit yield and the leaf Na(+) or Cl(-) concentrations in salt-treated plants after 90 d of salt treatment. In conclusion, grafting provides an alternative way to enhance salt tolerance, determined as fruit yield, in the tomato, and evidence is reported that the rootstock is able to reduce ionic stress.  相似文献   

15.
Variation in dynamics of phytochrome A in Arabidopsis ecotypes and mutants   总被引:2,自引:0,他引:2  
Phytochromes are photoreceptors in plants which can exist in two different conformations: the red light‐absorbing form (Pr) and the far‐red light‐absorbing form (Pfr), depending on the light quality. The Pfr form is the physiologically active conformation. To attenuate the Pfr signal for phytochrome A (phyA), at least two different mechanisms exist: destruction of the molecule and dark reversion. Destruction is an active process leading to the degradation of Pfr. Dark reversion is the light‐independent conversion of physiologically active Pfr into inactive Pr. Here, we show that dark reversion is not only an intrinsic property of the phytochrome molecule but is modulated by cellular components. Furthermore, we demonstrate that dark reversion of phyA may be observed in Arabidopsis ecotype RLD but not in other Arabidopsis ecotypes. For the first time, we have identified mutants with altered dark reversion and destruction in a set of previously isolated loss of function PHYA alleles (Xu et al. Plant Cell 1995, 7, 1433–1443). Therefore, the dynamics of the phytochrome molecule itself need to be considered during the characterization of signal transduction mutants.  相似文献   

16.
17.
18.
The Arabidopsis AtMTP family of genes encode proteins of the cation diffusion facilitator (CDF) family, with several members having roles in metal tolerances. Four of the 11 proteins in the family form a distinct cluster on a phylogenetic tree and are closely related to ShMTP8, a CDF identified in the tropical legume Stylosanthes hamata that is implicated in the transport of Mn(2+) into the vacuole as a tolerance mechanism. Of these four genes, AtMTP11 was the most highly expressed member of the Arabidopsis subgroup. When AtMTP11 was expressed in Saccharomyces cerevisiae, it conferred Mn(2+) tolerance and transported Mn(2+) by a proton-antiport mechanism. A mutant of Arabidopsis with a disrupted AtMTP11 gene (mtp11) was found to have increased sensitivity to Mn(2+) but not to Cu(2+) or Zn(2+). At a non-toxic but sufficient Mn(2+) supply (basal), the mutant accumulated more Mn(2+) than the wild type, but did not show any obvious deleterious effects on growth. When grown with Mn(2+) supplies that ranged from basal to toxic, the mutant accumulated Mn(2+) concentrations in shoots similar to those in wild-type plants, despite showing symptoms of Mn(2+) toxicity. AtMTP11 fused to green fluorescent protein co-localized with a reporter specific for pre-vacuolar compartments. These findings provide evidence for Mn(2+)-specific transport activity by AtMTP11, and implicate the pre-vacuolar compartments in both Mn(2+) tolerance and Mn(2+) homeostasis mechanisms of Arabidopsis.  相似文献   

19.
RAB11 GTPases, widely conserved members of RAB small GTPases, have evolved in a unique way in plants; plant RAB11 has notable diversity compared with animals and yeast. Recently, we have shown that members of RABA1, a subgroup in Arabidopsis RAB11 group, are required for salinity stress tolerance. To obtain a clue to understand its underlying mechanism, here we investigate whether RABA1 regulates sodium transport across the plasma membrane and accumulation in the vacuole. The results indicate that the raba1 quadruple mutant is not defective in the import and intracellular distribution of sodium, implying that RABA1 members are involved in a more indirect way in the responses to salinity stress.  相似文献   

20.
Control of xylem Na+ loading has often been named as the essential component of salinity tolerance mechanism. However, it is less clear to what extent the difference in this trait may determine differential salinity tolerance between species. In this study, barley (Hordeum vulgare L. cv. CM72) and rice (Oryza sativa L. cv. Dongjin) plants were grown under two levels of salinity. Na+ and K+ concentrations in the xylem sap, and shoot and root tissues were measured at different time points after stress onset. Salt‐exposed rice plants prevented xylem Na+ loading for several days, but failed to control this process in the longer term, ultimately resulting in a massive Na+ shoot loading. Barley plants quickly increased xylem Na+ concentration and its delivery to the shoot (most likely for the purpose of osmotic adjustment) but were able to reduce this process later on, keeping most of accumulated Na+ in the root, thus maintaining non‐toxic shoot Na+ level. Rice plants increased shoot K+ concentration, while barley plants maintained higher root K+ concentration. Control of xylem Na+ loading is remarkably different between rice and barley; this difference may differentiate the extent of the salinity tolerance between species. This trait should be investigated in more detail to be used in the breeding programs aimed to improve salinity tolerance in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号