首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim: Chicken anaemia virus (CAV) causes an economically important viral disease in chickens worldwide. The main aim of this study was to establish a rapid, sensitive and specific loop‐mediated isothermal amplification (LAMP) assay for detecting CAV infection. Methods and Results: A set of four specific LAMP primers were designed based on the nucleotide sequence of the CAV VP2 gene, which encodes a nonstructural protein. These were used for the amplification of a specific target region of the VP2 gene. LAMP amplicons were successfully amplified and detected by DNA electrophoresis and by direct naked eye SYBR Green I visualization. A sensitivity test systematically demonstrated that the LAMP assay was superior to a conventional PCR assay with a minimum concentration limit of 100 fg compared to 10 ng for the conventional PCR. The specificity of the LAMP assay for CAV detection is consistent with conventional PCR. Using this established LAMP assay, infected and uninfected clinical samples obtained from an experimental farm were fully verified. Conclusions: A novel nucleic acid‐based approach of LAMP assay was successfully developed for detecting CAV infection. Significance and Impact of the Study: In this study, these results indicate that the developed LAMP assay herein for CAV detection is a time‐effective, simple, sensitive and specific test that can be used as an alternative approach in the future for large‐scaled diagnosis on the farm of CAV infection.  相似文献   

2.
3.
4.
5.
6.
The one‐step real‐time turbidity loop‐mediated isothermal amplification assay (RealAmp) was developed to detect Hosta virus X (HVX), the most devastating threat to hosta industry. The reaction was performed in a single tube at 63°C for 15 min, and real‐time turbidimetry was used to monitor the amplification results. Specificity and sensitivity analyses demonstrated that this RealAmp method was sensitive as real‐time TaqMan RT‐PCR and about 100‐fold higher than conventional RT‐PCR with no cross‐reaction with other viral pathogens. Field samples detection showed that HVX could be identified effectively with this method. Overall, this RealAmp assay for HVX detection was simple, specific, sensitive, convenient and time‐saving and could assist in the quarantine measures for prevention and control of the disease caused by HVX.  相似文献   

7.
猪流感是由猪流感病毒(Swine influenza vi rus, SIV)引起的一种呼吸道传染病,具有发病率高、死亡率低的特点,罹患流感的怀孕母猪还有并发流产的危险。猪流感已给我国养猪业带来严重危害。SIV属于正粘病毒科 A 型流感病毒属[1]。A型流感病毒可感染多种动物,一般认为,水禽是流感病毒的自然宿主和基因库,猪则是人流感病毒株与禽流感病毒株的中间宿主和混合器[1],通过基因重配产生抗原转移而导致新流感病毒株的出现。研究病毒两种受体[2],因此所有A型流感病毒都能感染猪,猪在流感病毒的生态分布中占有重要地位。目前猪流感的主要流行血…  相似文献   

8.
9.
10.
11.
Aims: To develop a novel Vero cell assay that implements a real‐time cell electronic sensing (RT‐CES) system for the determination of the presence of verotoxin‐producing Escherichia coli (VTEC). The assay overcomes the major drawbacks in conventional Vero cell assay, for example, labour‐intensive and time‐consuming. Methods and Results: Cells were grown onto the surfaces of microelectronic sensors that are integrated into the bottom surfaces of the microtiter plate. Cellular viability was monitored in real‐time and quantified based on changes in the sensor’s electrical impedance. For cell viability measurement, the data generated on the RT‐CES system correlated well with those obtained by the Vero cell assay for Verotoxins. To assess cytotoxicity, test cells growing on microelectronic sensors were treated with either supernatant from pure cultures, or stool samples. The specific neutralizing antibodies of VT1 and VT2 were used to identify specific toxins in the samples. Conclusions: The RT‐CES assay provides a sensitive measurement comparable to conventional crystal violet assay. The assay has been successfully and specifically used to identify VTEC in human faecal samples. Significance and Impact of the Study: The RT‐CES assay significantly shortens the testing time from 48 to 72 h required by the crystal violet assay to only 15 h with automated operation.  相似文献   

12.
Swine influenza viruses (SIV) naturally infect pigs and can be transmitted to humans. In the pig, genetic reassortment to create novel influenza subtypes by mixing avian, human, and swine influenza viruses is possible. An SIV vaccine inducing cross-protective immunity between different subtypes and strains circulating in pigs is highly desirable. Previously, we have shown that an H3N2 SIV (A/swine/Texas/4199-2/98 [TX98]) containing a deleted NS1 gene expressing a truncated NS1 protein of 126 amino acids, NS1black triangle126, was attenuated in swine. In this study, 4-week-old pigs were vaccinated with the TX98 NS1black triangle126 modified live virus (MLV). Ten days after boosting, pigs were challenged with wild-type homologous H3N2 or heterosubtypic H1N1 SIV and sacrificed 5 days later. The MLV was highly attenuated and completely protected against challenge with the homologous virus. Vaccinated pigs challenged with the heterosubtypic H1N1 virus demonstrated macroscopic lung lesions similar to those of the unvaccinated H1N1 control pigs. Remarkably, vaccinated pigs challenged with the H1N1 SIV had significantly lower microscopic lung lesions and less virus shedding from the respiratory tract than did unvaccinated, H1N1-challenged pigs. All vaccinated pigs developed significant levels of hemagglutination inhibition and enzyme-linked immunosorbent assay titers in serum and mucosal immunoglobulin A antibodies against H3N2 SIV antigens. Vaccinated pigs were seronegative for NS1, indicating the potential use of the TX98 NS1black triangle126 MLV as a vaccine to differentiate infected from vaccinated animals.  相似文献   

13.
Aims: The goal of this study was to develop and to optimize molecular tools to detect the presence of Torque teno virus (TTV) in swine and cattle. A novel real‐time polymerase chain reaction (PCR) using a TaqMan probe was developed to detect both genogroups of TTV strains. Methods and Results: Oligonucleotide primers and hybridization probes were designed based on sequence analysis of the noncoding region, a highly conserved part of the genome. The real‐time PCR assay specifically detected bovine and porcine TTV DNA without cross‐amplification of other common pathogens. The assay was compared with conventional PCR and nested‐PCR assays for the detection of porcine genogroups 1 and 2 and bovine TTV on plasma and faecal samples, and the assay was found faster, more reliable and reduced the risk of false positive results. Conclusions: The real‐time PCR assay provided better detection results for the two TTV genogroups in both swine and cattle compared to the conventional PCR assays. Significance and Impact of the Study: This new TaqMan PCR assay will be a useful tool for the detection of animal TTV strains, to evaluate the viral load from animal host and finally to identify the presence of these viruses in the agri‐food continuum.  相似文献   

14.
Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method performed under isothermal conditions and has a high specificity and efficiency. We developed a LAMP assay targeting the 16S rRNA gene for rapid detection of Haemophilus parasuis. The results obtained from testing 31 H. parasuis strains and 28 other bacterial species strains showed that LAMP was as specific as, and more sensitive than, nested PCR. Fifty-five lung samples were collected from 55 healthy pigs. All the samples were negative for H. parasuis by bacterial isolation, nested PCR and LAMP, respectively. In addition, 122 lung samples were collected from 122 pigs with apparent respiratory problems. Sixty-five were positive by bacterial isolation. All the samples that were positive by bacterial isolation were also positive by nested PCR and LAMP. The LAMP assay demonstrated higher sensitivity than nested PCR, picking up 16 additional cases. The LAMP assay also gave a same result compared with the nested PCR when the two assays were used, respectively, to detect H. parasuis from samples obtained from experimentally infected pigs. We concluded that LAMP is a highly sensitive and reliable method for detection of H. parasuis infection.  相似文献   

15.
16.
17.
Aims: Tuberculous pleurisy is an important cause of pleural effusions in areas with a high incidence of tuberculosis. In this study, we developed an IS1081‐based LAMP for the detection of Mycobacterium tuberculosis complex and investigated its usefulness in the diagnosis of tuberculous pleurisy. Methods and Results: Investigation of pleural effusion samples from patients with tuberculous pleurisy, majority of them smear‐/culture‐negative, and control individuals with non‐TB diseases showed that the LAMP assay with incubation time of 60 min has much higher specificity and the LAMP assay with incubation time of 90 min has significantly higher sensitivity in the diagnosis of tuberculous pleurisy, as compared with fluorescent real‐time PCR. Conclusions: The MTBC–LAMP is a useful assay for the diagnosis of tuberculous pleurisy, especially in pleural effusion smear‐/culture‐negative patients. Significance and Impact of the Study: Tuberculous pleural effusion usually contains low number of mycobacteria, which leads to low diagnostic sensitivity of acid‐fast staining and mycobacterial culture methods. In this study, we developed a simple and sensitive LAMP assay for the diagnosis of tuberculous pleurisy. This assay should have broad application in resource‐limited settings.  相似文献   

18.
Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.  相似文献   

19.
Aims: To develop a specific and highly sensitive loop-mediated isothermal amplification (LAMP) technique for the rapid detection of canine parvovirus (CPV) DNA directly in suspected faecal samples of dogs by employing a simple method of template preparation. Methods and Results: LAMP reaction was developed by designing two sets of outer and inner primers, which target a total of six distinct regions on VP2 gene of CPV. The template DNA was prepared by a simple boiling and chilling method. Of the 140 faecal samples screened by the developed LAMP and the conventional PCR assays, 104 samples (74·28%) were found positive by LAMP, whereas 81 samples (57·85%) were found positive by PCR. The specificity of the LAMP assay was tested by cross-examination of common pathogens of dogs and further confirmed by sequencing. The detection limit of the LAMP was 0·0001 TCID(50) ml(-1) , whereas the detection limit of the PCR was 1000 TCID(50) ml(-1) . Conclusions: The developed LAMP assay detects CPV DNA in faecal specimens directly within an hour by following a simple and rapid boiling and chilling method of template preparation. The result also shows that the developed LAMP assay is specific and highly sensitive in detecting CPV. Significance and Impact of the Study: The result indicates the potential usefulness of LAMP which is a simple, rapid, specific, highly sensitive and cost-effective field-based method for direct detection of CPV from the suspected faecal samples of dogs.  相似文献   

20.
Aim: The objective of this study is to develop a serovar‐specific loop‐mediated isothermal amplification (LAMP) method for sensitive, rapid, and inexpensive detection of Salmonella serovar Enteritidis under field conditions. Methods: A set of six specific primers was designed with Salmonella Enteritidis DNA as the target. LAMP conditions were optimized by incubating the target DNA with the Bst DNA polymerase large fragment in a simple water bath. The sensitivity and specificity of LAMP was then compared with those of fluorescent quantitative real‐time polymerase chain reaction (FQ‐PCR). Results: The results were as follows. (1) Serovar‐specific Salmonella Enteritidis DNA was amplified at 65°C in as early as 20 min in a water bath. (2) A colour change visible to the naked eye indicated a positive amplification reaction. (3) The detection limit of the LAMP assay was 4 copies μl?1; thus, the sensitivity and specificity of this assay is similar to those of the FQ‐PCR. Conclusions: LAMP is a high‐throughput detection technique with high sensitivity, specificity, and simplicity; these factors make it suitable for specifically detecting Salmonella Enteritidis under field conditions and in laboratory settings. Thus, LAMP eliminates the need for complicated equipment and technical training in the detection of this specific serovar. Significance and impact of the study: This is the first study involving the use of LAMP to detect Salmonella serovar‐specific DNA sequences. It is also the first to report an ideal method of distinguishing between Salmonella Enteritidis and other Salmonella under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号