首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aeromonas hydrophila transports extracellular protein toxins via the type II secretion system, an export mechanism comprised of numerous proteins that spans both the inner and outer membranes. Two components of this secretion system, ExeA and ExeB, form a complex in the inner membrane that functions to locate and/or assemble the ExeD secretin in the outer membrane. In the studies reported here, two-codon insertion mutagenesis of exeA revealed that an insertion at amino acid 495 in the C-terminal region of ExeA did not alter ExeAB complex formation yet completely abrogated its involvement in ExeD secretin assembly and thus rendered the bacteria secretion negative. In silico analysis of protein motifs with similar amino acid profiles revealed that this amino acid is located within a putative peptidoglycan (PG) binding motif in the periplasmic domain of ExeA. Substitution mutations of three highly conserved amino acids in the motif were constructed. In cells expressing each of these mutants, the ability to assemble the ExeD secretin or secrete aerolysin was lost, while ExeA retained the ability to form a complex with ExeB. In in vivo cross-linking experiments, wild-type ExeA could be cross-linked to PG, whereas the three substitution mutants of ExeA could not. These data indicate that PG binding and/or remodelling plays a role in the function of the ExeAB complex during assembly of the ExeD secretin.  相似文献   

2.
Aeromonas hydrophila secretes a number of protein toxins across the outer membrane via the type II secretion system (T2SS). Assembly of the secretion channel ExeD secretin into the outer membrane is dependent on the peptidoglycan binding domain of ExeA. In this study, the peptidoglycan binding domain PF01471 family members were divided into a prokaryotic group and a eukaryotic group. By comparison of their sequence conservation profiles and their representative crystal structures, we found the prokaryotic members to have a highly conserved pocket(s) that is not present in the eukaryotic members. Substitution mutations of nine amino acids of the pocket were constructed in ExeA. Five of the substitution derivatives showed greatly decreased lipase secretion, accompanied by defects in secretin assembly. In addition, using in vivo cross-linking and in vitro cosedimentation assays, we showed that these mutations decreased ExeA-peptidoglycan interactions. These results suggest that the highly conserved pocket in ExeA is the binding site for its peptidoglycan ligand and identify residues critical for this binding.  相似文献   

3.
Aeromonas hydrophila secretes a number of degradative enzymes and toxins into the external milieu via the type II secretory pathway or secreton. ExeA is an essential component of this system and is necessary for the localization and/or multimerization of the secretin ExeD. ExeA contains two sequence motifs characteristic of the Walker superfamily of ATPases. Previous examination of substitution derivatives altered in these motifs suggested that ATP binding or hydrolysis is required for ExeAB complex formation and subsequent secretion function. To directly examine ExeA function, the N-terminal cytoplasmic domain of ExeA with the addition of a C-terminal hexahistidine tag (cytExeA) was overproduced in Escherichia coli and purified by metal chelate affinity and anion-exchange chromatographic techniques. Purified preparations of cytExeA exhibited ATPase activity in the presence of several divalent cations, Mg2+ being the preferred cation, with an optimum reaction temperature of approximately 37 to 42 degrees C and an optimum pH of 7 to 8. cytExeA exhibited an apparent K(m) for Mg-ATP of 0.22 mM and a V(max) of 0.72 nmol min(-1) mg(-1) of protein. cytExeA displayed low specificity for nucleoside triphosphate substrates and was significantly inhibited by F-type ATPase inhibitors. Gel filtration analyses of cytExeA, ExeA, and ExeAB indicated that ExeA dimerizes and forms a very large complex with ExeB. These findings support a model whereby ExeAB utilizes energy derived from ATP hydrolysis to facilitate the correct localization and multimerization of the ExeD secretin.  相似文献   

4.
The type II secretion system (T2SS) functions as a transport mechanism to translocate proteins from the periplasm to the extracellular environment. The ExeA homologue in Aeromonas hydrophila, GspA(Ah), is an ATPase that interacts with peptidoglycan and forms an inner membrane complex with the ExeB homologue (GspB(Ah)). The complex may be required to generate space in the peptidoglycan mesh that is necessary for the transport and assembly of the megadalton-sized ExeD homologue (GspD(Ah)) secretin multimer in the outer membrane. In this study, the requirement for GspAB in the assembly of the T2SS secretin in Aeromonas and Vibrio species was investigated. We have demonstrated a requirement for GspAB in T2SS assembly in Aeromonas salmonicida, similar to that previously observed in A. hydrophila. In the Vibrionaceae species Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus, gspA mutations significantly decreased assembly of the secretin multimer but had minimal effects on the secretion of T2SS substrates. The lack of effect on secretion of the mutant of gspA of V. cholerae (gspA(Vc)) was explained by the finding that native secretin expression greatly exceeds the level needed for efficient secretion in V. cholerae. In cross-complementation experiments, secretin assembly and secretion in an A. hydrophila gspA mutant were partially restored by the expression of GspAB from V. cholerae in trans, further suggesting that GspAB(Vc) performs the same role in Vibrio species as GspAB(Ah) does in the aeromonads. These results indicate that the GspAB complex is functional in the assembly of the secretin in Vibrio species but that a redundancy of GspAB function may exist in this genus.  相似文献   

5.
Aeromonas hydrophila secretes protein toxins via the type II pathway, involving the products of at least two operons, exeAB (gspAB) and exeC-N (gspC-N). In the studies reported here, aerolysin secretion was restored to C5.84, an exeA::Tn5-751 mutant, by overexpression of exeD alone in trans. Expression studies indicated that these results did not reflect a role of ExeAB in the regulation of the exeC-N operon. Instead, immunoblot analysis showed that ExeD did not multimerize in C5.84, and fractionation of the membranes showed that the monomeric ExeD remained in the inner membrane. Expression of ExeAB, but not either protein alone, from a plasmid in C5.84 resulted in increases in the amount of multimeric ExeD, which correlated with increases in aerolysin secretion. Pulse-chase analysis also suggested that the induction of ExeAB allowed multimerization of previously accumulated monomer ExeD. In C5.84 cells overproducing ExeD, it multimerized even in the absence of ExeAB and, although most remained in the inner membrane, an amount similar to that in wild-type outer membranes fractionated with the outer membrane of the overproducing cells. These results indicate that the secretion defect of exeAB mutants is a result of an inability to assemble the ExeD secretin in the outer membrane. The localization and multimerization of overproduced ExeD in these mutants further suggests that the ExeAB complex plays either a direct or indirect role in the transport of ExeD into the outer membrane.  相似文献   

6.
The type two secretion system is a large, trans-envelope apparatus that secretes toxins across the outer membrane of many Gram-negative bacteria. In Aeromonas hydrophila, ExeA interacts with peptidoglycan and forms a heteromultimeric complex with ExeB that is required for assembly of the ExeD secretin of the secretion system in the outer membrane. While the peptidoglycan-ExeAB (PG-AB) complex is required for ExeD assembly, the assembly mechanism remains unresolved. We analyzed protein-protein interactions to address the hypothesis that ExeD assembly in the outer membrane requires direct interaction with the PG-AB complex. Yeast and bacterial two hybrid analyses demonstrated an interaction between the periplasmic domains of ExeB and ExeD. Two-codon insertion mutagenesis of exeD disrupted lipase secretion, and immunoblotting of whole cells demonstrated significantly reduced secretin in mutant cells. Mapping of the two-codon insertions and deletion analysis showed that the ExeB-ExeD interaction involves the N0 and N1 subdomains of ExeD. Rotational anisotropy using the purified periplasmic domains of ExeB and ExeD determined that the apparent dissociation constant of the interaction is 1.19±0.16 µM. These results contribute important support for a putative mechanism by which the PG-AB complex facilitates assembly of ExeD through direct interaction between ExeB and ExeD. Furthermore, our results provide novel insight into the assembly function of ExeB that may contribute to elucidating the role of homologous proteins in secretion of toxins from other Gram negative pathogens.  相似文献   

7.
The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 A the structure of MxiM28-142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel 'cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525-570, hinders lipid binding to MxiM.  相似文献   

8.
The Pseudomonas aeruginosa inner membrane protein FimV is among several proteins of unknown function required for type IV pilus-mediated twitching motility, arising from extension and retraction of pili from their site of assembly in the inner membrane. The pili transit the periplasm and peptidoglycan (PG) layer, ultimately exiting the cell through the PilQ secretin. Although fimV mutants are nonmotile, they are susceptible to killing by pilus-specific bacteriophage, a hallmark of retractable surface pili. Here we show that levels of recoverable surface pili were markedly decreased in fimV pilT retraction-deficient mutants compared with levels in the pilT control, demonstrating that FimV acts at the level of pilus assembly. Levels of inner membrane assembly subcomplex proteins PilM/N/O/P were decreased in fimV mutants, but supplementation of these components in trans did not restore pilus assembly or motility. Loss of FimV dramatically reduced the levels of the PilQ secretin multimer through which pili exit the cell, in part due to decreased levels of PilQ monomers, while PilF pilotin levels were unchanged. Expression of pilQ in trans in the wild type or fimV mutants increased total PilQ monomer levels but did not alter secretin multimer levels or motility. PG pulldown assays showed that the N terminus of FimV bound PG in a LysM motif-dependent manner, and a mutant with an in-frame chromosomal deletion of the LysM motif had reduced motility, secretin levels, and surface piliation. Together, our data show that FimV's role in pilus assembly is to promote secretin formation and that this function depends upon its PG-binding domain.  相似文献   

9.
Type IV pili (T4P) are retractile appendages that contribute to the virulence of bacterial pathogens. PilF is a Pseudomonas aeruginosa lipoprotein that is essential for T4P biogenesis. Phenotypic characterization of a pilF mutant confirmed that T4P-mediated functions are abrogated: T4P were no longer present on the cell surface, twitching motility was abolished, and the mutant was resistant to infection by T4P retraction-dependent bacteriophage. The results of cellular fractionation studies indicated that PilF is the outer membrane pilotin required for the localization and multimerization of the secretin, PilQ. Mutation of the putative PilF lipidation site untethered the protein from the outer membrane, causing secretin assembly in both inner and outer membranes. T4P-mediated twitching motility and bacteriophage susceptibility were moderately decreased in the lipidation site mutant, while cell surface piliation was substantially reduced. The tethering of PilF to the outer membrane promotes the correct localization of PilQ and appears to be required for the formation of stable T4P. Our 2.0-Å structure of PilF revealed a superhelical arrangement of six tetratricopeptide protein-protein interaction motifs that may mediate the contacts with PilQ during secretin assembly. An alignment of pseudomonad PilF sequences revealed three highly conserved surfaces that may be involved in PilF function.  相似文献   

10.
Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS. Limited proteolysis and mass spectrometry identified the 28 C-terminal residues of the S domain as a minimal binding site with low nanomolar affinity for PulS in vitro that is sufficient for outer membrane targeting of PulD in vivo. The region upstream of this binding site is not required for targeting or multimerization and does not interact with PulS, but it is required for secretin function in type II secretion. Although other secretin chaperones differ substantially from PulS in sequence and secondary structure, they have all adopted at least superficially similar mechanisms of interaction with their cognate secretins, suggesting that intrinsically disordered regions facilitate rapid interaction between secretins and their chaperones.  相似文献   

11.
Bacteriophage SPN1S infects the pathogenic Gram‐negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane‐permeabilized Gram‐negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram‐negative bacteria background, the α‐helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane‐permeabilized Escherichia coli. The three‐helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane‐permeabilized E. coli and was therefore proposed as the peptidoglycan‐binding domain. These structural and functional features suggest that endolysin from a Gram‐negative bacterial background has peptidoglycan‐binding activity and performs glycoside hydrolase activity through the catalytic dyad.  相似文献   

12.
Protein secretion by many Gram-negative bacteria occurs via the type II pathway involving translocation across the cytoplasmic and outer membranes in separate steps. The mechanism by which metabolic energy is supplied to the translocation across the outer membrane is unknown. Here we show that two Aeromonas hydrophila inner membrane proteins, ExeA and ExeB, are required for this process. ExeB bears sequence as well as topological similarity to TonB, a protein which opens gated ports for the inward translocation of ligands across the outer membrane. ExeA is a novel membrane protein which contains a consensus ATP-binding site. Mutations in this site dramatically decreased the rate of secretion of the toxin aerolysin from the cell. ExeB was stable when overproduced in the presence of ExeA, but was degraded when synthesized in its absence, indicating that the two proteins form a complex. These results suggest that ExeA and ExeB may act together to transduce metabolic energy to the opening of a secretion port in the outer membrane.  相似文献   

13.
The DNA-binding protein Sac7d was previously modified to bind with high affinity to the N domain of the outer membrane secretin PulD from the bacterium Klebsiella oxytoca. Here, we show that binding of the Sac7d derivatives (affitins) to PulD is sensitive to conformational changes caused by denaturant and by the zwitterionic detergent Zwittergent 3-14 routinely used to extract secretins from outer membranes. This sensitivity to the conformational state of PulD allowed us to use the affitins as probes for the native structure of PulD and to devise protocols for examining in vitro synthesized protein in nonionic detergent and for the affinity purification of native PulD using affitins as ligands. When fused to periplasmic PhoA, three affitins inhibited PulD multimerization in vivo and caused loss of function. In two cases, this was likely to be due to dimerization of the affitin by the bound PhoA, as the effect was absent when the affitins were fused to monomeric MalE. In the third case, the MalE and PhoA moieties probably interfered sterically with PulD protomer interactions and, thereby, inhibited multimerization. None of the affitins tested interacted with PulD at sites of protomer interaction or blocked the secretin channel through which exoproteins cross the outer membrane in the Type II secretion pathway of which PulD is a key component.  相似文献   

14.
Investigations into protein folding are largely dominated by studies on monomeric proteins. However, the transmembrane domain of an important group of membrane proteins is only formed upon multimerization. Here, we use in vitro translation-coupled folding and insertion into artificial liposomes to investigate kinetic steps in the assembly of one such protein, the outer membrane secretin PulD of the bacterial type II secretion system. Analysis of the folding kinetics, measured by the acquisition of distinct determinants of the native state, provides unprecedented evidence for a sequential multistep process initiated by membrane-driven oligomerization. The effects of varying the lipid composition of the liposomes indicate that PulD first forms a “prepore” structure that attains the native state via a conformational switch.  相似文献   

15.
Linker and deletion mutagenesis and gene fusions were used to probe the possible domain structure of the dodecameric outer membrane secretin PulD from the pullulanase secretion pathway of Klebsiella oxytoca. Insertions of 24 amino acids close to or within strongly predicted and highly conserved amphipathic beta strands in the C-terminal half of the polypeptide (the beta domain) abolished sodium dodecyl sulfate (SDS)-resistant multimer formation that is characteristic of this protein, whereas insertions elsewhere generally had less dramatic effects on multimer formation. However, the beta domain alone did not form SDS-resistant multimers unless part of the N-terminal region of the protein (the N domain) was produced in trans. All of the insertions except one, close to the C terminus of the protein, abolished function. The N domain alone was highly unstable and did not form SDS-resistant multimers even when the beta domain was present in trans. We conclude that the beta domain is a major determinant of multimer stability and that the N domain contributes to multimer formation. The entire or part of the N domain of PulD could be replaced by the corresponding region of the OutD secretin from the pectate lyase secretion pathway of Erwinia chrysanthemi without abolishing pullulanase secretion. This suggests that the N domain of PulD is not involved in substrate recognition, contrary to the role proposed for the N domain of OutD, which binds specifically to pectate lyase secreted by E. chrysanthemi (V. E. Shevchik, J. Robert-Badouy, and G. Condemine, EMBO J. 16:3007-3016, 1997).  相似文献   

16.
RmpM is a putative peptidoglycan binding protein from Neisseria meningitidis that has been shown to interact with integral outer membrane proteins such as porins and TonB-dependent transporters. Here we report the 1.9 A crystal structure of the C-terminal domain of RmpM. The 150-residue domain adopts a betaalphabetaalphabetabeta fold, as first identified in Bacillus subtilis chorismate mutase. The C-terminal RmpM domain is homologous to the periplasmic, C-terminal domain of Escherichia coli OmpA; these domains are thought to be responsible for non-covalent interactions with peptidoglycan. From the structure of the OmpA-like domain of RmpM, we suggest a putative peptidoglycan binding site and identify residues that may be essential for binding. Both the crystal structure and solution experiments indicate that RmpM may exist as a dimer. This would promote more efficient peptidoglycan binding, by allowing RmpM to interact simultaneously with two glycan chains through its C-terminal, OmpA-like binding domain, while its (structurally uncharacterized) N-terminal domain could stabilize oligomers of porins and TonB-dependent transporters in the outer membrane.  相似文献   

17.
Related outer membrane proteins, termed secretins, participate in the secretion of macromolecules across the outer membrane of many Gram-negative bacteria. In the pullulanase-secretion system, PulS, an outer membrane-associated lipoprotein, is required both for the integrity and the proper outer membrane localization of the PulD secretin. Here we show that the PulS-binding site is located within the C-terminal 65 residues of PulD. Addition of this domain to the filamentous phage secretin, pIV, or to the unrelated maltose-binding protein rendered both proteins dependent on PulS for stability. A chimeric protein composed of bacteriophage f1 pIV and the C-terminal domain of PulD required properly localized PulS to support phage assembly. An in vivo complex formed between the pIV-PulD65 chimera and PulS was detected by co-immunoprecipitation and by affinity chromatography.  相似文献   

18.
The type VI secretion system (T6SS) is an anti‐bacterial weapon comprising a contractile tail anchored to the cell envelope by a membrane complex. The TssJ, TssL, and TssM proteins assemble a 1.7‐MDa channel complex that spans the cell envelope, including the peptidoglycan layer. The electron microscopy structure of the TssJLM complex revealed that it has a diameter of ~18 nm in the periplasm, which is larger than the size of peptidoglycan pores (~2 nm), hence questioning how the T6SS membrane complex crosses the peptidoglycan layer. Here, we report that the MltE housekeeping lytic transglycosylase (LTG) is required for T6SS assembly in enteroaggregative Escherichia coli. Protein–protein interaction studies further demonstrated that MltE is recruited to the periplasmic domain of TssM. In addition, we show that TssM significantly stimulates MltE activity in vitro and that MltE is required for the late stages of T6SS membrane complex assembly. Collectively, our data provide the first example of domestication and activation of a LTG encoded within the core genome for the assembly of a secretion system.  相似文献   

19.
We isolated temperature-sensitive mutants of the Escherichia coli bamD gene, which is essential for the assembly of β-barrel outer membrane proteins. As their multicopy suppressor, we identified a novel yiaD gene encoding a putative lipoprotein, YiaD. Mutations of its OmpA domain, which is required for interaction with peptidoglycan, affected suppression, suggesting that interaction with peptidoglycan is important to YiaD function.  相似文献   

20.
Allosteric HIV‐1 integrase (IN) inhibitors (ALLINIs) bind at the dimer interface of the IN catalytic core domain (CCD), and potently inhibit HIV‐1 by promoting aberrant, higher‐order IN multimerization. Little is known about the structural organization of the inhibitor‐induced IN multimers and important questions regarding how ALLINIs promote aberrant IN multimerization remain to be answered. On the basis of physical chemistry principles and from our analysis of experimental information, we propose that inhibitor‐induced multimerization is mediated by ALLINIs directly promoting inter‐subunit interactions between the CCD dimer and a C‐terminal domain (CTD) of another IN dimer. Guided by this hypothesis, we have built atomic models of inter‐subunit interfaces in IN multimers by incorporating information from hydrogen‐deuterium exchange (HDX) measurements to drive protein‐protein docking. We have also developed a novel free energy simulation method to estimate the effects of ALLINI binding on the association of the CCD and CTD. Using this structural and thermodynamic modeling approach, we show that multimer inter‐subunit interface models can account for several experimental observations about ALLINI‐induced multimerization, including large differences in the potencies of various ALLINIs, the mechanisms of resistance mutations, and the crucial role of solvent exposed R‐groups in the high potency of certain ALLINIs. Our study predicts that CTD residues Tyr226, Trp235 and Lys266 are involved in the aberrant multimer interfaces. The key finding of the study is that it suggests the possibility of ALLINIs facilitating inter‐subunit interactions between an external CTD and the CCD‐CCD dimer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号