首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio vulnificus is a human pathogen that produces lethal septicemia in susceptible persons, and the primary virulence factor for this organism is capsular polysaccharide (CPS). The role of the capsule in V. vulnificus biofilms was examined under a variety of conditions, by using either defined CPS mutants or spontaneous CPS expression phase variants derived from multiple strains. CPS expression was shown to inhibit attachment and biofilm formation, which contrasted with other studies describing polysaccharides as integral to biofilms in related species.  相似文献   

2.
3.
4.
《Cell reports》2023,42(6):112551
  1. Download : Download high-res image (145KB)
  2. Download : Download full-size image
  相似文献   

5.
目的对A群脑膜炎球菌荚膜多糖纯化工艺的关键步骤进行分步研究,优化每一步工艺参数。方法优化十六烷基三甲基溴化铵的加入浓度、复合多糖的解离浓度和解离时间、不同厂家的苯酚、超滤和透析等工艺过程对荚膜多糖的影响。结果十六烷基三甲基溴化铵质量体积终浓度0.10%(w/v)沉淀效果更好,纯化获得的荚膜多糖产量更高相对分子质量更大。复合多糖解离浓度越高,纯化获得的荚膜多糖相对分子质量越小。延长复合多糖解离时间有利于提高荚膜多糖产量。不同厂家的苯酚、超滤和透析等工艺对荚膜多糖的产量和分子大小没有影响。结论现行A群脑膜炎球菌荚膜多糖纯化工艺复杂,优化后的工艺提高了荚膜多糖产量,缩短了工艺用时,增加了工艺稳定性。  相似文献   

6.
7.
Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.  相似文献   

8.
Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched beta-1,6-N-acetyl-D-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-beta-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria.  相似文献   

9.
Several bacterial pathogens have evolved the means to escape immune detection by mimicking host cell surface carbohydrates that are crucial for self/non-self recognition. Sialic acid, a terminal residue on these carbohydrates, inhibits activation of the alternate pathway of complement by recruiting the immune modulating molecule factors H, I, and iC3b. Sialylation of capsular polysaccharide (CPS) is important for virulence of group B streptococci (GBS), a significant human pathogen. We previously reported that cpsK, a gene within the cps locus of type III GBS, could complement a sialyltransferase deficient lst mutant of Haemophilus ducreyi, implicating its role in sialylation of the GBS capsule. To explore the function of cpsK in GBS capsule production, we created a mutant in cpsK. Immunoblot analysis and enzyme-linked immunosorbent assay using anti-type III CPS antisera demonstrated that the mutant CPS did not contain sialic acid. This was confirmed by high-performance liquid chromatography after mild acid hydrolysis of the CPS. Although increased CPS chain length was seen for this strain, CPS production was <20% of the parental isolate. An episomal cpsK copy restored synthesis of sialo-CPS to wild-type levels. These data support our hypothesis that cpsK encodes the GBS CPS sialyltransferase and provide further evidence that lack of CPS oligosaccharide sialylation reduces the amount of CPS expressed on the cell surface. These observations also imply that one or more of the components involved in synthesis or transport of oligosaccharide repeating units requires a sialo-oligosaccharide for complete activity.  相似文献   

10.
The synthesis of the Escherichia coli capsular polysaccharide varies with growth medium, temperature of growth, and genetic background. lac fusions to genes necessary for capsule synthesis (cps) demonstrated that these genes are regulated negatively in vivo by the lon gene product. We have now isolated, characterized, and mapped mutations in three new regulatory genes (rcs, for regulator of capsule synthesis) that control expression of these same fusions. rcsA and rcsB are positive regulators of capsule synthesis. rcsA is located at min 43 on the E. coli map, whereas rcsB lies at 47 min. rcsC, a negative regulator of capsule synthesis, is located at min 47, close to rcsB. All three regulatory mutations are unlinked to either the structural genes cpsA-F or lon. Mutations in all three rcs genes are recessive to the wild type. We postulate that lon may regulate capsule synthesis indirectly, by regulating the availability of one of the positive regulators.  相似文献   

11.
12.
13.
目的:利用肺炎球菌1型全菌体制备多克隆抗体,并且利用该抗体建立肺炎1型荚膜多糖夹心酶联免疫吸附分析法( Enzyme-linked immunosorbent assay ,ELISA),用于检测发酵和纯化过程中的多糖浓度。方法用灭活的1型肺炎链球菌免疫家兔6周,获得高滴度的抗多糖血清,经过亲和层析纯化,获得高纯度的兔抗肺炎1型多糖抗体IgG。以纯化IgG作为包被抗体,加入多糖样品,再以生物素化的抗体作为检测抗体,建立夹心ELISA法检测肺炎1型多糖浓度。确定标准曲线的最佳线性范围,并对该方法进行特异性、准确性和精密度验证。结果兔免疫血清经过双向免疫扩散检测抗体滴度可达1∶32;该方法的线性检测范围为1.56~50 ng/mL;最低检测限为3.13 ng/mL。在标准品中混入其他型别多糖或培养基,回收率分别为102%和108%;该方法批内精密度和批间精密度分别为6.08%和7.01%。结论建立的夹心ELISA方法,其特异性、准确性和精密度均良好,可以特异地检测肺炎球菌1型多糖浓度。  相似文献   

14.
15.
荚膜多糖是细菌的保护性抗原和毒力因子,也是细菌疫苗最重要的靶抗原之一,其分离纯化是制作疫苗的首要步骤。本文从去除菌体、收集总糖、去除菌体核酸和蛋白质、去除内毒素等基本工艺步骤,对现有的工艺和目前的工艺进展进行了综述,重点阐述了中空纤维、深层过滤、超滤、酶水解、柱层析等方法在荚膜多糖分离纯化中的应用进展。  相似文献   

16.
17.
RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing.  相似文献   

18.
Cryptococcus neoformans, which causes fatal infection in immunocompromised individuals, has an elaborate polysaccharide capsule surrounding its cell wall. The cryptococcal capsule is the major virulence factor of this fungal organism, but its biosynthetic pathways are virtually unknown. Extracellular polysaccharides of eukaryotes may be made at the cell membrane or within the secretory pathway. To test these possibilities for cryptococcal capsule synthesis, we generated a secretion mutant in C. neoformans by mutating a Sec4/Rab8 GTPase homolog. At a restrictive temperature, the mutant displayed reduced growth and protein secretion, and accumulated approximately 100-nm vesicles in a polarized manner. These vesicles were not endocytic, as shown by their continued accumulation in the absence of polymerized actin, and could be labeled with anti-capsular antibodies as visualized by immunoelectron microscopy. These results indicate that glucuronoxylomannan, the major cryptococcal capsule polysaccharide, is trafficked within post-Golgi secretory vesicles. This strongly supports the conclusion that cryptococcal capsule is synthesized intracellularly and secreted via exocytosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号