首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Many insect-borne pathogens are heterogeneously distributed within their hosts: therefore, a vector’s within-plant distribution may be a predictor of its exposure to pathogens. In this study, we set out to quantify plant site preference, in the context of background matching, and investigated its effect on acquisition of a bacterial pathogen by its leafhopper vectors. The two green-coloured species, Graphocephala atropunctata and Draeculacephala minerva, preferred green plant tissue and artificial backgrounds whereas the brown-coloured Homalodisca vitripennis preferred brown stem tissue and backgrounds. Within-plant feeding site did not predict either the acquisition success or the number of plant-pathogenic Xylella fastidiosa cells acquired by the vectors; an 86% mortality for G. atropunctata was reported on the lignified stem tissue. Overall, H. vitripennis acquired significantly more cells than G. atropunctata. A novel artificial diet-based transmission system was used to further illustrate that the observed between-species difference in the number of cells acquired was independent of vector-host plant interactions. H. vitripennis, a less efficient vector of the bacterium X. fastidiosa on grapevines, acquired more bacterial cells than G. atropunctata, possibly due to its larger size. Contrary to previous assumptions, pathogen acquisition efficiency by the vectors did not explain their reported differences in inoculation. Vector interactions with the host during the inoculation stage should be evaluated as another determinant of X. fastidiosa transmission efficiency.  相似文献   

2.
1. Epidemiological theory predicts that vector preference for hosts differing in infection status (i.e. healthy or infected) affects disease dynamics. 2. Numerous studies have documented strong vector preference for or discrimination against infected hosts. However, the significance of these behaviours for pathogen transmission and spread has been poorly described. 3. We conducted a series of choice assays to evaluate orientation preference, feeding preference, and movement rates of an important group of vectors, the sharpshooter leafhoppers, based on host infection status for the generalist plant pathogen, Xylella fastidiosa Wells et al. 4. Sharpshooters did not discriminate between healthy versus infected‐but‐asymptomatic grapevines, but they oriented preferentially to healthy grapevines more frequently than either symptomatic vines or those artificially coloured to mimic disease symptoms. 5. In a field trial three sharpshooter species showed different movement rates and preferences for feeding site, but all species exhibited similar and significant preference for healthy hosts. 6. Although there was no significant difference in acquisition efficiency among vector species, those individuals that spent more time on healthy hosts tended to be less likely to acquire the pathogen. 7. These results suggest that sharpshooters discriminate against infected grapevines, which are likely to be of poorer quality, with visual cues playing a role in host selection. Preference by these vectors may affect pathogen acquisition, which could affect disease spread in the field.  相似文献   

3.
The recent establishment of Xylella fastidiosa subspecies pauca in the southern Italian region of Apulia threatens agricultural crops and the environment. Olive is an important and widespread ancient crop in Italy and, so far, the most impacted host. The meadow spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae) has been identified as a vector of X. fastidiosa in southern Italy; this species is one of the most common potential vectors in Europe. To generate disease management strategies, data on X. fastidiosa transmission by P. spumarius are necessary. Therefore, we carried out transmission experiments by using field‐collected spittlebugs in 2014 and 2015 (5 and 11 collection dates, respectively), and transferring groups of insects immediately on to recipient plants. Various host plant species were tested: olive, oleander, sweet orange, grapevine and the stone fruit rootstock GF677 (Prunus persica × Prunus amygdalus). Xylella fastidiosa was detected in all the host plants after insect plant access except for grapevine; infections to sweet orange and stone fruit were not systemic. In 2015, estimates of insect X. fastidiosa infectivity were obtained; the number of PCR‐positive P. spumarius on each plant was positively correlated with the plant infection status. The proportion of P. spumarius infected with X. fastidiosa ranged from 25% to 71% during the entire survey period. The number of X. fastidiosa cells detected in P. spumarius heads ranged from 3.5 × 10 to 4.0 × 102 (CFU equivalents), which is lower than that reported for leafhopper vectors in the Americas. These data show that field‐collected P. spumarius have high rates of X. fastidiosa infection and are competent vectors.  相似文献   

4.
Insect-vectored plant viruses can induce changes in plant phenotypes,thus influencing plant-vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e.,circulative vs.noncirculative).This indirect vector manipulation requires host-virus-vector coevolution and would thus be effective solely in very specific plant-virus-vector species associations.Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency.In anintegrative study,we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV)or the circulative Turnip yellows virus (TuYV)on the host-plant colonization of two aphid species differing in their virus transmission efficiency:the polyphagous Myzus persicae,efficient vector of both viruses,and the Brassicaceae specialist Brevicoryne brassicae,poor vector of TuYV and efficient vector of CaMV.Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e.,decreased phloem sap ingestion)and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition.In addition,virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV,that is,enhanced feeding behavior and performances,were favorable to their acquisition and further dispersal.Altogether,this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses.Our results also re- inforce the idea that vector manipulation requires coevolution between plant,virus and vector.  相似文献   

5.
The meadow spittlebug, Philaenus spumarius L. (Hemiptera: Aphrophoridae), is the main vector of the phytopathogenic bacterium Xylella fastidiosa in Europe, where the ST53 strain induces the olive quick decline syndrome, causing severe economic damage in southern Italy. The wide range of plant species infected by X. fastidiosa, and the wide host range of P. spumarius suggest that a large number of wild and cultivated plants may become infected by the pathogen following unintentional introduction events. Therefore, it is necessary to detail the host plant preference of the vector, in order to include preferred plants in the field, in pathogen-targeted diagnostic efforts. This would allow the identification of main sources of X. fastidiosa acquisition by P. spumarius; such plant species represent an important target for rational disease management. Here, we investigated the host plants of P. spumarius in north-western Italy, a region where X. fastidiosa is still not present but is regarded as a primary threat. We designed a new molecular diagnostic tool targeting chloroplast DNA, to characterize the gut content of single P. spumarius adults. The newly set up, nested PCR/sequencing-based identification protocol was proven to be useful for retrieving sequences from the last two different host plants used by P. spumarius, even if limited persistence of intact chloroplast DNA was reported in the spittlebug gut. We propose this protocol as a new tool for supporting research on xylem feeder biology that could be particularly useful for highly polyphagous species such as P. spumarius. Furthermore, the method could help monitor X. fastidiosa invasion, and contribute to the study of vector ecology and pathogen epidemiology.  相似文献   

6.
A bacterial parasite (designated as BEV) of the leafhopper Euscelidius variegatus, which is passed transovarially to offspring, was transmitted from insect to insect via feeding of the insects in plants. The rate of bacterial infection of leafhoppers fed upon plants that had previously been exposed to BEV-infected leafhoppers declined with an increase in the time that infected leafhoppers had been off rye grass. Transmission of BEV also occurred on sugar beet and barley but not celery. The bacterium was also transmitted to and acquired from membrane-encased artificial diets. There was no evidence that the bacterium was transmitted via plant surfaces, but transmission and direct culture assays from plants indicated that the bacterium did not multiply or move within plants. This parasite-host relationship may represent a primitive stage in either the evolution of intracellular symbiosis with its insect host or to alternative parasitization of plant and insect hosts via insect transmission, as is the case for insect-vectored plant pathogens.Correspondence to: A.H. Purcell.  相似文献   

7.
Viruses are likely to be the most dangerous parasites of living organisms because of their widespread occurrence, possible deleterious effects on their hosts and high rates of evolution. Virus host‐to‐host transmission is a critical step in the virus life cycle, because it enables survival in a given environment and efficient dissemination. As hosts of plant viruses are not mobile, these pathogens have adopted diverse transmission strategies involving various vector organisms, mainly arthropods, nematodes, fungi and protists. In nature, plants are often infected with more than one virus at a time, thereby creating potential sources for vectors to acquire and transmit simultaneously two or more viruses. Simultaneous transmission can result in multiple infections of new host plants, which become subsequent potential sources of the viruses, thus enhancing the spread of the diseases caused by these pathogens. Moreover, it can contribute to the maintenance of viral genetic diversity in the host communities. However, despite its possible significance, the problem of the simultaneous transmission of plant viruses by vectors has not been investigated in detail. In this review, the current knowledge on multiple viral transmissions by aphids, whiteflies, leafhoppers, planthoppers, nematodes and fungi is outlined.  相似文献   

8.
Understanding how changes in plant diversity affect agroecosystem functioning remains a key challenge. We examined how intercropping alfalfa, Medicago sativa, with orchardgrass, Dactylis glomerata, affects the potato leafhopper, Empoasca fabae, its host plant (alfalfa), and the efficiency of a leafhopper predator, Nabis americoferus. In a field experiment, intercropping reduced the reproductive efficiency of the leafhopper. Nabis was more effective at reducing leafhopper abundance, and protecting alfalfa from hopperburn, in the polyculture than in the monoculture of alfalfa. In a series of laboratory experiments, we investigated mechanisms by which intercropping could enhance the efficiency of Nabis. Intercropping resulted in changes in vegetation structure and the spatial distribution of leafhoppers, but there was little evidence that these factors influenced the efficiency of Nabis. Instead, orchardgrass, a nonhost for leafhoppers, increased leafhopper movement, and Nabis captured leafhoppers more efficiently when the herbivores were more mobile. These results indicate that intercropping with nonhost plants promotes leafhopper movement and vulnerability to predation, and reveal a novel mechanism by which plant diversity can reduce herbivory.  相似文献   

9.
Graphocephala atropunctata or the blue‐green sharpshooter (BGSS) has been long recognized as the principal native vector of Xylella fastidiosa in coastal, wine‐grape‐growing areas of California. X. fastidiosa is the causative agent of Pierce's disease of grapevine and of numerous other leaf‐scorching diseases of agronomically important plants. X. fastidiosa has been shown to colonize the cibarium and precibarium (anterior foregut) of sharpshooters, where it may encounter other naturally occurring bacterial species. Here, deep 16S rRNA sequencing was used to survey the microbiota associated with the BGSS anterior foregut. DNA was extracted from dissected cibaria and precibaria; a portion of the 16S rRNA gene was amplified and sequenced using Illumina MiSeq technology. An average of approximately 32 000 sequence reads per insect was obtained. Agrobacterium was the most common genus detected; additional sequencing of the full‐length 16S rRNA gene further identified this as Agrobacterium tumefaciens or A. fabrum. A number of additional plant‐associated bacterial genera were also detected (Pseudomonas and Ensifer), along with genera known to be associated with insects (Baumannia), and soil (Stenotrophomonas, Caulobacter, Delftia, Achromobacter, Acinetobacter and Novosphingobium). Approximately half of the genera reported here have been previously reported to be prevalent in the cibarium and precibarium of glassy‐winged sharpshooter (GWSS; Homalodisca vitripennis). Many of these cibarium‐ and precibarium‐associated genera likely interact with X. fastidiosa.  相似文献   

10.
The sharpshooter Tapajosa rubromarginata (Signoret) (Hemiptera: Cicadellidae, Proconiini), a vector of the bacterium Xylella fastidiosa Wells et al. (Xanthomonadaceae) that causes citrus variegated chlorosis, has more than 30 reported host plant species. The fitness of a phytophagous insect is determined by the host plant suitability, plant resistance, and the natural enemies. The aim of this study was to: (1) identify plant species utilized as oviposition substrate by T. rubromarginata in the field; (2) establish the relationship between plants and clutch size; (3) establish the relationship among host plants, clutch size, and level of parasitism; and (4) establish variations in parasitoid composition and abundance in the various host plants. Egg masses of the sharpshooter were surveyed on plants reported as hosts, or those that were abundant in the study site. The number of eggs of the sharpshooter and emerged parasitoids were recorded for all the collected masses. We found egg masses of T. rubromarginata on 12 out of 21 plant species sampled. The size of the egg masses was greatly influenced by the type of leaf venation and to a lesser extent by the plant species. Parasitism rates were influenced by both leaf venation and host plant. Trichogrammatidae species were mostly associated with egg masses in plants with parallel-veined leaves, whereas Mymaridae attacked masses laid in reticular-veined leaves. The choice between a good host plant, but heavily attacked by parasitoids, and the host plants that are less suitable for nymphs but less frequently attacked by natural enemies, was a trade-off for T. rubromarginata females to increase their fitness. We conclude that the host plant utilization by T. rubromarginata females in the field could be influenced by leaf structure and the strategy to avoid parasitism by selecting plants that were less attractive for parasitoids.  相似文献   

11.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

12.
The effects of different isolates of the tomato spotted wilt tospovirus (TSWV), host plants, and temperatures on Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), the most important vector of TSWV in North Carolina, were measured in the laboratory. Thrips were reared at either 18.3, 23.9, or 29.4 °C until adult eclosion on excised leaves of Datura stramonium L. or Emilia sonchifolia (L.). Plants were either infected with the TSWV isolates CFL or RG2, or left uninfected (control). The results revealed a positive relationship between larval survival and temperature, regardless of host plant or TSWV isolate. Both survival to adult and percentage transmission of TSWV by F. fusca were significantly affected by the interaction between host plant and TSWV isolate. The consequence of this interaction was that the cohort‐based percentage transmission from infected E. sonchifolia plants for CFL was 1.3‐fold greater than that of RG2, whereas the percentage transmission from infected D. stramonium plants for RG2 was twice that of CFL. Both host plant and TSWV isolates showed significant effects on thrips development time to adult and head capsule width of adult thrips, as well as on the incidence of thrips infection with TSWV. The infection status of these thrips was determined by ELISA for the NSs viral protein. Infected thrips reared on infected host foliage took longer to develop to adult and were smaller than non‐infected thrips which had also been reared on infected host foliage, demonstrating a direct effect of the TSWV on thrips. However, non‐infected thrips reared on non‐infected leaves took longer to develop than non‐infected thrips reared on infected leaves, suggesting an effect of the plant tissue on thrips. In addition, adult thrips reared on TSWV‐infected D. stramonium at 29.4 °C developed smaller head capsules than thrips developing on infected foliage at lower temperatures and on non‐infected leaves of D. stramonium or E. sonchifolia. Both TSWV isolates and host plants differentially affected females more than males. In conclusion, both the infection of thrips by TSWV and TSWV‐mediated changes in host plant quality were found to have significant biological effects on F. fusca.  相似文献   

13.
Virus infection may change not only the host‐plant phenotypic (morphological and physiological) characteristics, but can also modify the behavior of their insect vector in a mutualistic or rather antagonistic manner, to promote their spread to new hosts. Viruses differ in their modes of transmission and depend on vector behavior for successful spread. Here, we investigated the effects of the semi‐persistently transmitted Tomato chlorosis virus (ToCV, Crinivirus) and the persistent circulative Tomato severe rugose virus (ToSRV, Begomovirus) on alighting preferences and arrestment behavior of their whitefly vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East Asia Minor 1 (MEAM1) on tomato plants (Solanum lycopersicum L. cv. Santa Clara, Solanaceae). The vector alighting preferences between infected and uninfected plants in choice assays were apparently influenced by the presence of ToCV and ToSRV in the whiteflies or by their previous exposure to infected plants. The observed changes in vector behavior do not seem to benefit the spread of ToCV: non‐viruliferous insects clearly preferred mock‐inoculated plants, whereas ToCV‐viruliferous insects landed on mock‐inoculated and ToCV‐infected plants, indicating a partial change in insect behavior – ToCV was able to directly affect the preference of its vector B. tabaci, but this change in insect behavior did not affect the virus spread because viruliferous insects landed on mock‐inoculated and infected plants indistinctly. In contrast, ToSRV‐viruliferous insects preferred to land on mock‐inoculated plants, a behavior that increases the probability of spread to new host plants. In the arresting behavior assay, the majority of the insects remained on mock‐inoculated plants when released on them. A greater number of insects moved toward mock‐inoculated plants when initially released on ToCV‐ or ToSRV‐infected plants, suggesting that these viruses may repel or reduce the nutritional quality of the host plants for B. tabaci MEAM1.  相似文献   

14.
Population genetic structuring is common among herbivorous insects and frequently is associated with divergent host plants, such as crops and their wild relatives. Previous studies showed population genetic structuring in corn leafhopper Dulbulus maidis in Mexico, such that the species consists of two sympatric, host plant-associated populations: an abundant and widespread "pestiferous” population on maize (Zea mays mays), and a small and localized "wild" population on perennial teosinte (Zea diploperennis). a maize wild relative with a limited distribution. This study addressed whether assortative mating and immigrant inviability mediate genetic structuring of corn leafliopper by comparing the mating and reproductive successes of pestiferous and wild females that colonize their nonassociated host plants against the successes of females colonizing their associated host plants. Assortative mating was assessed by comparing mating frequencies and premating and mating times among females of each population on each host plant: immigrant inviability was assessed by comparing, across two generations, the fecundity, survival, development time, sex ratio, and population growth rate among leafhopper populations and host plants. Our results showed that on maize, and compared to resident, pestiferous females, wild females were more likely to mate, and greater proportions of their offspring survived to adult stage and were daughters;consequently, the per-generation population growth rate on maize was greater for immigrant, wild leafhoppers compared to resident, pestiferous leafhoppers. Our results suggested that wild leafhoppers emigrating to maize have a fitness advantage over resident, pestiferous leafhoppers, while immigrant pestiferous and resident wild leafhoppers on teosinte have similar fitnesses.  相似文献   

15.
Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design.  相似文献   

16.
Phytoplasmas belonging to the 16S rDNA subgroups IB and IC were found in five cyclamen (Cyclamen persicum L.) plants showing virescence and yellow stunted leaves and one plant showing phyllody, rolled and thickened leaves, respectively. Two cyclamens, representing the two syndromes, were chosen as source plants for transmission trials in which three leafhopper species, known as vectors of IB and IC subgroup phytoplasmas, were used to inoculate cyclamen and periwinkle [Catharanthus roseus (L.) G. Don] test plants. Out of 366 tested plants only one periwinkle exposed to Euscelis incisus was found harbouring a 16Sr‐IB phytoplasma. Out of 60 tested vector insects, only one adult of Macrosteles quadripunctulatus and two of E. incisus fed on 16Sr‐IB source cyclamen gave a positive amplification signal in nested PCR. This extremely low level of transmission to both cyclamen and the very susceptible periwinkle strongly suggests that cyclamen, commonly found infected in crops, is an unsuitable species for phytoplasma acquisition and can be regarded as a dead‐end host plant for phytoplasmas belonging to both IB and IC subgroups. Indications for glasshouse management are drawn from these findings. Among the leafhoppers investigated E. incisus falls most under suspicion since it feeds better than the others on cyclamen, was able to transmit the disease to one periwinkle plant, and IB phytoplasmas were detected in two individuals.  相似文献   

17.
Xylem-feeding is apparently the only requirement making an insect a competent vector of the bacterium Xylella fastidiosa, an organism responsible for the devastation of the Southern Italian olive forest and nowadays considered one of the most feared threats to agriculture and landscape in Europe, including vineyards. Here, we used the direct current-electrical penetration graph (DC-EPG) technique to compare and describe the feeding behaviour on grapevine of four xylem-feeding species considered candidate vectors of X. fastidiosa widespread in Europe, namely two spittlebugs (the meadow spittlebug Philaenus spumarius and the spittlebug Neophilaenus campestris) and two sharpshooter leafhoppers (the rhododendron leafhopper Graphocephala fennahi and the green leafhopper Cicadella viridis). We created a standard for the analysis of EPG waveforms recorded with a DC-EPG device, describing feeding activities performed by these insects from stylet insertion into the plant to withdrawal. This standard, along with freely available software, has been developed to harmonize the calculation of feeding behavioural parameters in xylem-feeders. The most relevant differences between the two vector taxa were the probing frequency and the dynamics of xylem ingestion. Sharpshooters tended to perform significantly more probes than spittlebugs. In contrast, the latter spent longer times in low-frequency xylem ingestion, characterized by scattered contractions of the cibarial dilator muscle interspersed with periods of pump inactivity. Cicadella viridis was the species displaying the highest frequency of the electrical pattern found to be associated with X. fastidiosa inoculation in spittlebugs (Xe). Feeding behavioural data presented here represent an important step forward for deepening our knowledge of xylem-sap feeding insects' interaction with both the host plants and the bacterium they transmit.  相似文献   

18.
19.
Pathogens can alter host phenotypes in ways that influence interactions between hosts and other organisms, including insect disease vectors. Such effects have implications for pathogen transmission, as well as host exposure to secondary pathogens, but are not well studied in natural systems, particularly for plant pathogens. Here, we report that the beetle‐transmitted bacterial pathogen Erwinia tracheiphila – which causes a fatal wilt disease – alters the foliar and floral volatile emissions of its host (wild gourd, Cucurbita pepo ssp. texana) in ways that enhance both vector recruitment to infected plants and subsequent dispersal to healthy plants. Moreover, infection by Zucchini yellow mosaic virus (ZYMV), which also occurs at our study sites, reduces floral volatile emissions in a manner that discourages beetle recruitment and therefore likely reduces the exposure of virus‐infected plants to the lethal bacterial pathogen – a finding consistent with our previous observation of dramatically reduced wilt disease incidence in ZYMV‐infected plants.  相似文献   

20.
Aphids are the most common vector of plant viruses, and their feeding behavior is an important determinant of virus transmission. Positive effects of global change on aphid performance have been documented, but effects on aphid behavior are not known. We assessed the plant‐mediated behavioral responses of a generalist aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), to increased CO2 and nitrogen when feeding on each of three host species: Amaranthus viridis L. (Amaranthaceae), Polygonum persicaria L. (= Persicaria maculosa Gray) (Polygonaceae), and Solanum dulcamara L. (Solanaceae). Via a family of constrained Markov models, we tested the degree to which aphid movements demonstrate preference among host species or plants grown under varying environmental conditions. Entropy rates of the estimated Markov chains were used to further quantify aphid behavior. Our statistical methods provide a general tool for assessing choice and quantitatively comparing animal behavior under different conditions. Aphids displayed strong preferences for the same host species under all growth conditions, indicating that CO2‐ and N‐induced changes in plant chemistry have minimal effects on host preference. However, entropy rates increased in the presence of non‐preferred hosts, even when preferred hosts were available. We conclude that the presence of a non‐preferred host species affected aphid‐feeding behavior more than changes in plant leaf chemistry when plants were grown under elevated CO2 and increased N availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号