首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter‐ and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain‐filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control.  相似文献   

2.
Aedes albopictus (Diptera: Culicidae) distribution is bounded to a subtropical area in Argentina, while Aedes aegypti (Diptera: Culicidae) covers both temperate and subtropical regions. We assessed thermal and photoperiod conditions on dormancy status, development time and mortality for these species from subtropical Argentina. Short days (8 light : 16 dark) significantly increased larval development time for both species, an effect previously linked to diapause incidence. Aedes albopictus showed higher mortality than Ae. aegypti at 16 °C under long day treatments (16 light : 8 dark), which could indicate a lower tolerance to a sudden temperature decrease during the summer season. Aedes albopictus showed a slightly higher percentage of dormant eggs from females exposed to a short day, relative to previous research in Brazilian populations. Since we employed more hours of darkness, this could suggest a relationship between day‐length and dormancy intensity. Interestingly, local Ae. aegypti presented dormancy similar to Ae. albopictus, in accordance with temperate populations. The minimum dormancy in Ae. albopictus would not be sufficient to extend its bounded distribution. We believe that these findings represent a novel contribution to current knowledge about the ecophysiology of Ae. albopictus and Ae. aegypti, two species with great epidemiological relevance in this subtropical region.  相似文献   

3.
Abstract Larval competition is common in container‐breeding mosquitoes. The impact of competition on larval growth has been thoroughly examined and findings that larval competition can lead to density‐dependent effects on adult body size have been documented. The effects of larval competition on adult longevity have been less well explored. The effects of intraspecific larval densities on the longevity of adults maintained under relatively harsh environmental conditions were tested in the laboratory by measuring the longevity of adult Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) that had been reared under a range of larval densities and subsequently maintained in high‐ or low‐humidity regimes (85% or 35% relative humidity [RH], respectively) as adults. We found significant negative effects of competition on adult longevity in Ae. aegypti, but not in Ae. albopictus. Multivariate analysis of variance suggested that the negative effect of the larval environment on the longevity of Ae. aegypti adults was most strongly associated with increased development time and decreased wing length as adults. Understanding how larval competition affects adult longevity under a range of environmental conditions is important in establishing the relationship between models of mosquito population regulation and epidemiological models of vector‐borne disease transmission.  相似文献   

4.
Aedes albopictus (Stegomyia albopictus) (Diptera: Culicidae) has probably supplanted Aedes aegypti (Stegomyia aegypti) throughout most of its historical range in the U.S.A., although Ae. aegypti still exists in large coastal cities in southern Florida. We measured salt concentrations in field containers along an axis perpendicular to the coast and examined intraspecific outcomes in these species under different salt concentrations in a factorial study using varying intra‐ and interspecific densities in different conditions of salinity to order to determine if salt could mitigate the documented competitive superiority of Ae. albopictus. Salt in field containers declined away from the coast, with maximal values similar to our lower salt concentrations. Egg hatching and short‐term survival of pupae and late instars were not affected by salt concentrations; survival of early instars of both species decreased at higher concentrations. In high salt conditions, Ae. aegypti achieved higher survival. In the longterm experiment, both species displayed longer development times. Salt did not affect interactions for either species; Ae. aegypti survived in the highest salt conditions, regardless of density. The tolerance of Ae. aegypti to high salt concentrations may allow it to use coastal containers, although because salt did not mediate interspecific interactions between Ae. aegypti and Ae. albopictus, the ultimate effects of salt on the coexistence of these species or exclusion of either species remain unknown.  相似文献   

5.
Mosquito‐borne diseases resulting from the expansion of two key vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), continue to challenge whole regions and continents around the globe. In recent years there have been human cases of disease associated with Chikungunya, dengue and Zika viruses. In Europe, the expansion of Ae. albopictus has resulted in local transmission of Chikungunya and dengue viruses. This paper considers the risk that Ae. aegypti and Ae. albopictus represent for the U.K. and details the results of mosquito surveillance activities. Surveillance was conducted at 34 points of entry, 12 sites serving vehicular traffic and two sites of used tyre importers. The most common native mosquito recorded was Culex pipiens s.l. (Diptera: Culicidae). The invasive mosquito Ae. albopictus was detected on three occasions in southern England (September 2016, July 2017 and July 2018) and subsequent control strategies were conducted. These latest surveillance results demonstrate ongoing incursions of Ae. albopictus into the U.K. via ground vehicular traffic, which can be expected to continue and increase as populations in nearby countries expand, particularly in France, which is the main source of ex‐continental traffic.  相似文献   

6.
The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) was first reported in central Africa in 2000, in Cameroon, with the indigenous mosquito species Ae. aegypti (Diptera: Culicidae). Today, this invasive species is present in almost all countries of the region, including the Central African Republic (CAR), where it was first recorded in 2009. As invasive species of mosquitoes can affect the distribution of native species, resulting in new patterns of vectors and concomitant risk for disease, we undertook a comparative study early and late in the wet season in the capital and the main cities of CAR to document infestation and the ecological preferences of the two species. In addition, we determined the probable geographical origin of invasive populations of Ae. albopictus with two mitochondrial DNA genes, COI and ND5. Analysis revealed that Ae. aegypti was more abundant earlier in the wet season and Ae. albopictus in the late wet season. Used tyres were the most heavily colonized productive larval habitats for both species in both seasons. The invasive species Ae. albopictus predominated over the resident species at all sites in which the two species were sympatric. Mitochondrial DNA analysis revealed broad low genetic diversity, confirming recent introduction of Ae. albopictus in CAR. Phylogeographical analysis based on COI polymorphism indicated that the Ae. albopictus haplotype in the CAR population segregated into two lineages, suggesting multiple sources of Ae. albopictus. These data may have important implications for vector control strategies in central Africa.  相似文献   

7.
8.
Two invasive, container‐breeding mosquito species, Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), have different distribution patterns on Reunion Island. Aedes albopictus occurs in all areas and Ae. aegypti colonizes only some restricted areas already occupied by Ae. albopictus. This study investigates the abiotic and biotic ecological mechanisms that determine the distribution of Aedes species on Reunion Island. Life history traits (duration of immature stages, survivorship, fecundity, estimated finite rate of increase) in Ae. aegypti and Ae. albopictus were compared at different temperatures. These fitness measures were characterized in both species in response to competitive interactions among larvae. Aedes aegypti was drastically affected by temperature, performing well only at around 25 °C, at which it achieved its highest survivorship and greatest estimated rate of increase. The narrow distribution of this species in the field on Reunion Island may thus relate to its poor ability to cope with unfavourable temperatures. Aedes aegypti was also more negatively affected by high population densities and to some extent by interactions with Ae. albopictus, particularly in the context of limited food supplies. Aedes albopictus exhibited better population performance across a range of environmental conditions. Its ecological plasticity and its superior competitive ability relative to its congener may further enhance its invasion success on Reunion Island.  相似文献   

9.
Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) are highly anthropophilic mosquito species and potential vectors of dengue and yellow fever. The location of suitable sites for oviposition requires a set of visual, tactile, and olfactory cues that influence females before they lay their eggs. In this study, the effect of n‐heneicosane, a recognized oviposition pheromone of Ae. aegypti, on the olfactory receptors of the antennae of Ae. aegypti and Ae. albopictus was studied using electroantennographic detection coupled to gas chromatography (GC‐EAD). A significant electroantennographic response to n‐heneicosane in adult females of both mosquito species was observed. In addition, gravid Ae. albopictus females laid more eggs in substrate treated with n‐heneicosane at 0.1, 1, or 10 p.p.m. than in the control, denoting oviposition attractancy. Conversely, at 30, 50, 100, and 200 p.p.m., more eggs were laid in the control substrate, indicating oviposition repellency. Analysis of the larval cuticle by GC and mass spectrometry confirmed the presence of n‐heneicosane in the cuticles of Ae. albopictus larvae. The species‐specific role of n‐heneicosane as an oviposition pheromone in Ae. aegypti and its significance as a behaviour modifier of Ae. albopictus in breeding sites is discussed.  相似文献   

10.
Aedes aegypti and Aedes albopictus are invasive mosquito species with geographic ranges that have oscillated within Florida since their presence was first documented. Local transmission of dengue, chikungunya, and Zika viruses serves as evidence of the public health importance of these two species. It is important to have detailed knowledge of their distribution to aid in mosquito control efforts and understand the risk of arbovirus transmission to humans. Through a partnership involving the University of Florida Institute of Food and Agricultural Sciences Cooperative Extension Service and the Florida Medical Entomology Laboratory; the Florida Department of Health; and mosquito control agencies throughout Florida, a container mosquito surveillance program involving all life stages was launched in the summer of 2016 to detect the presence of Ae. aegypti and Ae. albopictus. Results from this survey were mapped to provide a picture of the current known distribution of Ae. aegypti and Ae. albopictus in Florida. Aedes aegypti and/or Ae. albopictus were detected in the 56 counties that were part of the survey. Only Aedes albopictus was detected in 26 counties, primarily in the panhandle region of Florida. The results of this work underscore the importance of maintaining container mosquito surveillance in a state where chikungunya, dengue, and Zika viruses are present and where there is continued risk for exotic arbovirus introductions.  相似文献   

11.
We investigated the oviposition behavior of Ae. aegypti and Ae. albopictus. In particular we examined whether small‐scale site characteristics and the presence of conspecifics or congeners altered oviposition by these mosquitoes. Various combinations of females of the two species were allowed to oviposit inside cages among either vegetation (potted plants) or structural components (wood and concrete blocks). Numbers of eggs deposited per female were compared between species, sides, and treatments. Most significant differences between treatments and species involved differences between single species and mixed species treatments. Ae. aegypti deposited more eggs/female in the vegetation side than in the structure side whereas the opposite pattern was evident for Ae. albopictus. Ae. aegypti females had higher frequency of skip oviposition than Ae. albopictus. An average of 63% of the containers in the two‐species treatments contained eggs of both species, with more frequent joint occurrences observed in the treatment with three females of each species than in the treatments with one of each. Our results point to the existence of various interactions between gravid Ae. aegypti and Ae. albopictus females at or near the oviposition sites but further experimental work is necessary to fully characterize the interactions and their specific mechanisms.  相似文献   

12.
Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood‐feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short‐day (10L:14D), 2) control (12L:12D), and 3) long‐day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short‐day conditions. Aedes aegypti adult females from short‐day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species‐specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths.  相似文献   

13.
Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue‐1 during 2009, 2010, and 2013 in Florida and dengue‐1 and −2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler‐imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV‐1 and −2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV‐1 (6–14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV‐2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue‐2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV‐2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.  相似文献   

14.
The mosquitoes Aedes albopictus (Stegomyia albopicta) (Skuse) and Culex quinquefasciatus (Say) (Diptera: Culicidae) are common inhabitants of tyres and other artificial containers, which constitute important peridomestic mosquito breeding habitats. We tested the hypotheses that interspecific resource competition between the larvae of these species is asymmetrical, that the concentration of chemicals associated with decomposing detritus affects the competitive outcomes of these species, and that wild and colonized strains of Cx. quinquefasciatus are affected differently by competition with Ae. albopictus. We conducted two laboratory competition experiments wherein we measured survivorship and estimated population growth (λ′) in both species under multiple mixed‐species densities. Under varying resource levels, competition was asymmetrical: Ae. albopictus caused competitive reductions or exclusions of Cx. quinquefasciatus under conditions of limited resources. In a second experiment, which used both wild and colonized strains of Cx. quinquefasciatus, organic chemical compounds associated with decomposing detritus did not affect the competitive outcome. The colonized strain of Cx. quinquefasciatus had greater survivorship and adult mass, and faster development times than the wild strain, but both strains were similarly affected by competition with Ae. albopictus. Competition between these species may have important consequences for vector population dynamics, especially in areas in which tyres and artificial containers constitute the majority of mosquito breeding habitats.  相似文献   

15.
Abstract The aim of this study was to assess whether certain attributes of larval breeding sites are correlated with pupal productivity (i.e. numbers of pupae collected per sampling period), so that these could be used as the focus for control measures to enhance control efficiency. Therefore, the objectives were to identify the months of highest pupal productivity of Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) in an urban temperate cemetery in Argentina where artificial containers of < 6 L (flower vases) were the predominant breeding habitats, to compare various measures of the productivity of sunlit and shaded containers and to determine whether the composition of the containers affected pupal productivity. Over a period of 9 months, 200 randomly chosen water‐filled containers (100 sunlit and 100 shaded), out of ~ 3738 containers present (~ 54% in shade), were examined each month within a cemetery (5 ha) in Buenos Aires (October 2006 to June 2007). In total, 3440 immatures of Cx pipiens and 1974 of Ae. aegypti were collected. The larvae : pupae ratio was 10 times greater for the former, indicating that larval mortality was greater for Cx pipiens. Both mosquito species showed a higher container index (CI) in shaded than in sunlit containers (Ae. aegypti: 12.8% vs. 6.9% [χ2 = 17.6, P < 0.001]; Cx pipiens: 6.3% vs. 1.8% [χ2 = 24, P < 0.001]). However, the number and the density of immatures per infested container and the number of pupae per pupa‐positive container did not differ significantly between sunlit and shaded containers for either species. Therefore, the overall relative productivity of pupae per ha of Ae. aegypti and Cx pipiens was 2.3 and 1.8 times greater, respectively, in shaded than in sunlit areas as a result of the greater CIs of containers in shaded areas. Neither the CI nor the number of immatures per infested container differed significantly among container types of different materials in either lighting condition. The maximum CI and total pupal counts occurred in March for Ae. aegypti and in January and February for Cx pipiens. The estimated peak abundance of pupae in the whole cemetery reached a total of ~ 4388 in the middle of March for Ae. aegypti and ~ 1059 in the middle of January for Cx pipiens. Spearman’s correlations between monthly total productivity and monthly CI were significant at P < 0.001 for Ae. aegypti (rs = 0.975) and P < 0.01 for Cx pipiens (rs = 0.869). Our findings indicate that the efficacy of control campaigns against the two most important mosquito vectors in temperate Argentina could be improved by targeting containers in shaded areas, with maximum effort during species‐specific times of year when pupal productivity is at its peak.  相似文献   

16.
The impact of the presence of larval mosquito pathogens with potential for biological control on oviposition choice was evaluated for three mosquito species/pathogen pairs present in Florida. These included Aedes aegypti infected with Edhazardia aedis, Aedes albopictus infected with Vavraia culicis, and Culex quinquefasciatus infected with Culex nigripalpus nucleopolyhedrovirus (CuniNPV). Two‐choice oviposition bioassays were performed on each host and pathogen species with one oviposition cup containing infected larvae and the other cup containing uninfected larvae (control). Both uninfected and E. aedis‐infected female Ae. aegypti laid significantly fewer eggs in oviposition cups containing infected larvae. Uninfected gravid female Ae. albopictus and Cx. quinquefasciatus oviposited equally in cups containing uninfected larvae or containing larvae infected with V. culicis or CuniNPV, respectively. Gravid female Ae. albopictus infected with V. culicis did not display ovarian development and did not lay eggs. The decreased oviposition by gravid Ae. aegypti in containers containing E. aedis‐infected larvae may indicate that the infected larvae produce chemicals deterring oviposition.  相似文献   

17.
Six mosquito species were identified in a survey of containers associated with 347 households in four villages in American Samoa. Aedes polynesiensis Marks (Diptera: Culicidae) and Aedes aegypti (L) were the most abundant species, representing 57% and 29% of the mosquitoes identified. Culex quinquefasciatus (Say), Culex annulirostris (Skuse), Aedes oceanicus (Belkin) and Toxorhynchites amboinensis (Doleschall) were also found. Aedes aegypti and Ae. polynesiensis showed distinct differences in their use of containers, preferring large and small containers, respectively. By contrast with previous studies, Ae. polynesiensis utilized domestic and natural containers with equal frequency, whereas Ae. aegypti continued to be found predominantly in domestic containers. Only 15% of containers holding immature mosquitoes included pupae and fewer than 10 Aedes spp. pupae were found in most containers with pupae. An estimated 2289 Ae. polynesiensis and 1640 Ae. aegypti pupae were found in 2258 containers. The presence of both species in the same container did not affect the mean density of either species for larvae or pupae. Glass jars, leaf axils, tree holes and seashells produced few Aedes spp. pupae in any of the study villages. Overall, 75% of Ae. polynesiensis pupae were found in buckets, ice-cream containers and tyres, with <7% being produced in natural containers, whereas 82% of Ae. aegypti pupae were found in 44-gallon (US) drums ( approximately 166L), buckets and tyres. Source reduction efforts targeting these container types may yield significant reductions in both Ae. polynesiensis and Ae. aegypti populations in American Samoa.  相似文献   

18.
Urbanization has caused an increase in favorable habitats for Aedes aegypti (Diptera: Culicidae), given their ability to reproduce in small and often non‐degradable artificial water‐containers. While much work has been done on Ae. aegypti biology and ecology in urban landscapes, the role of shading on immature stages as an independent factor from temperature, and any possible interactions between these factors, remains unexamined. We assessed how temperature and shading affected egg hatch‐rate, larval/pupal mortality, and larval development to adult stage under different factorial temperature (28; 31; 34; 37; 40° C) and shade (0%, 3,100 lux; 40%, 1,860 lux; 75%, 775 lux; 100%, 0 lux) regimes. Hatch‐rate was significantly lower at 37° C (57 %), and no eggs hatched at 40° C. There was no significant effect caused by shading on hatchability. Larval and pupal mortality at 37° C was significantly higher (35%) compared to lower temperature groups, while the effects of shading were emergent at low temperatures. Developmental times from hatching to adult emergence were significantly reduced with increasing temperatures and with greater light exposures. The eco‐physiological response of Ae. aegypti larvae to temperature and light regimes suggest a photosensitivity previously unstudied in this species.  相似文献   

19.
20.
Thirty‐two Aedes aegypti populations collected throughout Thailand and five populations of Aedes albopictus from southern Thailand were subjected to standard WHO contact bioassays to assess susceptibility to three commonly used synthetic pyrethroids: permethrin, deltamethrin, and lambda‐cyhalothrin. A wide degree of physiological response to permethrin was detected in Ae. aegypti, ranging from 56.5% survival (Lampang, northern Thailand) to only 4% (Kalasin in northeastern and Phuket in southern Thailand). All 32 populations of Ae. aegypti were found to have evidence of incipient resistance (62.5%) or levels of survival deemed resistant (37.5%) to permethrin. Four populations of Ae. albopictus were found with incipient resistance (97 – 80% mortality) and one with resistance (< 80%) to permethrin. The majority of Ae. aegypti populations (68.7%) was susceptible (> 98% mortality) to deltamethrin, with incipient resistance (observed 97–82% mortality) in other localities. In contrast, all populations of Ae. aegypti were completely susceptible (100% mortality) to the recommended operational dosage of lambda‐cyhalothrin. All five populations of Ae. albopictus were found completely susceptible to both deltamethrin and lambda‐cyhalothrin. Evidence of defined incipient or resistance to synthetic pyrethroids mandates appropriate response and countermeasures to mitigate further development and spread of resistance. In light of these findings, we conclude that routine and comprehensive susceptibility monitoring of dengue mosquito vectors to synthetic pyrethroids should be a required component of resistance management policies and disease control activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号