首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 13C/12C mass spectrometer was interfaced with a open gas exchange system including four growth chambers to investigate CO2 exchange components of perennial ryegrass (Lolium perenne L.) stands. Chambers were fed with air containing CO2 with known δ13C (δCΟ2?2.6 or ?46.8‰). The system did not fractionate C isotopes and no extraneous CO2 leaked into chambers. The on‐line 13C discrimination (Δ) of ryegrass stands in light was independent of δCΟ2 when δCΟ2 was constant. The δ of CO2 exchanged by the stands in light (δNd) and darkness (δRn) differed by 0.7‰, suggesting some Δ in dark respiration at the stand‐level. However, Δ decreased by ~ 10‰ when δCΟ2 was switched from ?46.8 to ?2.5‰, and increased by ~ 10‰ following a shift from ?2.6 to ?46.7‰ due to isotopic disequilibria between photosynthetic and respiratory fluxes. Isotopic imbalances were used to assess (non‐photorespiratory) respiration in light and the replacement of the respiratory substrate pool(s) by new photosynthate. Respiration was partially inhibited by light, but increased during the light period and decreased in darkness, in association with temperature changes. The labelling kinetics of respiratory CO2 indicated the existence of two major respiratory substrate pools: a fast pool which was exchanged within hours, and a slow pool accounting for ~ 60% of total respiration and having a mean residence time of 3.6 d.  相似文献   

2.
3.

cv, cultivar
δ, deviation of C isotope composition from a standard
Δ, C isotope discrimination
WSC, water soluble carbohydrates

Steady-state labelling of all post-anthesis photosynthate of wheat was performed to assess the mobilization of pre-anthesis C (C fixed prior to anthesis) in vegetative plant parts during grain filling. Results were compared with estimates obtained by indirect approaches to mobilization of pre-anthesis C: ‘classical’ growth analysis and balance sheets of water soluble carbohydrates (WSC) and protein. Experiments were performed with two spring wheat cultivars grown with differential nitrogen fertilizer supply in 1991 and 1992. The fraction of pre-anthesis C mobilized in above-ground vegetative biomass ranged between 24 and 34% of total C present at anthesis. Treatment effects on mobilization of pre-anthesis C in total above-ground vegetative biomass were closely related (r2 = 0·89) to effects on mobilization of WSC-C plus protein-C (estimated as N mobilized × 3·15). On average, 81% of pre-anthesis C mobilization was attributable to the balance of pre-anthesis WSC (48%) and protein (33%) between anthesis and maturity. In roots, WSC and protein mobilization accounted for only 29% of the loss of pre-anthesis C. Notably, mobilization of pre-anthesis C was 1·4–2·6 times larger than the net loss of C from above-ground vegetative biomass between anthesis and maturity. This discrepancy was mainly due to post-anthesis C accumulation in glumes and stem. Post-anthesis C accumulation was related to continued synthesis of structural biomass after anthesis and accounted for a mean 15% of total C contained in above-ground vegetative plant parts at maturity. A close correspondence between net loss of C and mobilization of pre-anthesis C was only apparent in leaf blades and leaf sheaths. Although balance sheets of WSC and protein also underrated the mobilization of pre-anthesis C by ≈ 19%, they gave a much better estimate of pre-anthesis C mobilization than growth analysis.  相似文献   

4.
α ‐Pinene is formed in and emitted by Quercus ilex leaves. The carbon emitted as α ‐pinene is rapidly and totally labelled by 13C in CO2 in air, but α ‐pinene contained in the leaf shows a fraction of completely unlabelled carbon even after long exposures to air containing only 13CO2. When the labelled leaf is darkened, α ‐pinene emission drops but is still measurable for about 10 h, and carbon becomes partially unlabelled. After an 11 h darkening the α ‐pinene content is still as high as in the light but the carbon is mostly unlabelled. If the leaf is re‐illuminated but photosynthesis is inhibited by removing CO2 and lowering O2, a burst of emission occurs and the content of α ‐pinene is depleted. Our experiments suggest that a pool of α ‐pinene which is not directly generated by photosynthesis intermediates exists. Since this pool does not contribute relevantly to the emission in the light, we hypothesize that it is inhibited in the light and spatially located in a different compartment from chloroplasts. As we discuss, glycolysis in the cytoplasm and leucine catabolism in the mitochondria are both possible extra‐chloroplasts sources of carbon for isoprenoids.  相似文献   

5.
Classical quantitative genetics and quantitative trait dissection analysis (QTL) approaches were used in order to investigate the genetic determinism of wood cellulose carbon isotope composition (δ13C, a time integrated estimate of water use efficiency) and of diameter growth and their relationship on adult trees (15 years) of a forest tree species (maritime pine). A half diallel experimental set‐up was used to (1) estimate heritabilities for δ13C and ring width and (2) to decompose the phenotypic δ13C/growth correlation into its genetic and environmental components. Considerable variation was found for δ13C (range of over 3‰) and for ring width (range of over 5 mm) and significant heritabilities (narrow sense 0·17/0·19 for δ13C and ring width, respectively, 100% additivity). The significant phenotypic correlation between δ13C and ring width was not determined by the genetic component, but was attributable to environmental components. Using a genetic linkage map of a full‐sib family, four significant and four suggestive QTLs were detected for δ13C, the first for δ13C in a forest tree species, as far as known to the authors. Two significant and four suggestive QTLs were found for ring width. No co‐location of QTLs was found between δ13C and growth.  相似文献   

6.
Leaks and isotopic disequilibria represent potential errors and artefacts during combined measurements of gas exchange and carbon isotope discrimination (Δ). This paper presents new protocols to quantify, minimize, and correct such phenomena. We performed experiments with gradients of CO2 concentration (up to ±250 μmol mol?1) and δ13CCO2 (34‰), between a clamp‐on leaf cuvette (LI‐6400) and surrounding air, to assess (1) leak coefficients for CO2, 12CO2, and 13CO2 with the empty cuvette and with intact leaves of Holcus lanatus (C3) or Sorghum bicolor (C4) in the cuvette; and (2) isotopic disequilibria between net photosynthesis and dark respiration in light. Leak coefficients were virtually identical for 12CO2 and 13CO2, but ~8 times higher with leaves in the cuvette. Leaks generated errors on Δ up to 6‰ for H. lanatus and 2‰ for S. bicolor in full light; isotopic disequilibria produced similar variation of Δ. Leak errors in Δ in darkness were much larger due to small biological : leak flux ratios. Leak artefacts were fully corrected with leak coefficients determined on the same leaves as Δ measurements. Analysis of isotopic disequilibria enabled partitioning of net photosynthesis and dark respiration, and indicated inhibitions of dark respiration in full light (H. lanatus: 14%, S. bicolor: 58%).  相似文献   

7.
The contribution of leaf litter decomposition to total soil CO2 efflux (FL/F) was evaluated in a beech (Fagus sylvatica L.) forest in eastern France. The Keeling‐plot approach was applied to estimate the isotopic composition of respired soil CO2 from soil covered with either control (?30.32‰) or 13C‐depleted leaf litter (?49.96‰). The δ13C of respired soil CO2 ranged from ?25.50‰ to ?22.60‰ and from ?24.95‰ to ?20.77‰, respectively, with depleted or control litter above the soil. The FL/F ratio was calculated by a single isotope linear mixing model based on mass conservation equations. It showed seasonal variations, increasing from 2.8% in early spring to about 11.4% in mid summer, and decreasing to 4.2% just after leaf fall. Between December 2001 and December 2002, cumulated F and FL reached 0.98 and 0.08 kgC m?2, respectively. On an annual basis, decomposition of fresh leaf litter accounted for 8% of soil respiration and 80% of total C loss from fresh leaf litter. The other fraction of carbon loss during leaf litter decomposition that is assumed to have entered the soil organic matter pool (i.e. 20%) represents only 0.02 kgC m?2.  相似文献   

8.
Plant carbon‐use‐efficiency (CUE), a key parameter in carbon cycle and plant growth models, quantifies the fraction of fixed carbon that is converted into net primary production rather than respired. CUE has not been directly measured, partly because of the difficulty of measuring respiration in light. Here, we explore if CUE is affected by atmospheric CO2. Sunflower stands were grown at low (200 μmol mol?1) or high CO2 (1000 μmol mol?1) in controlled environment mesocosms. CUE of stands was measured by dynamic stand‐scale 13C labelling and partitioning of photosynthesis and respiration. At the same plant age, growth at high CO2 (compared with low CO2) led to 91% higher rates of apparent photosynthesis, 97% higher respiration in the dark, yet 143% higher respiration in light. Thus, CUE was significantly lower at high (0.65) than at low CO2 (0.71). Compartmental analysis of isotopic tracer kinetics demonstrated a greater commitment of carbon reserves in stand‐scale respiratory metabolism at high CO2. Two main processes contributed to the reduction of CUE at high CO2: a reduced inhibition of leaf respiration by light and a diminished leaf mass ratio. This work highlights the relevance of measuring respiration in light and assessment of the CUE response to environment conditions.  相似文献   

9.
10.
Investigating the many internal feedbacks within the climate system is a vital component of the effort to quantify the full effects of future anthropogenic climate change. The stomatal apertures of plants tend to close and decrease in number under elevated CO2 concentrations, increasing water‐use efficiency (WUE) and reducing canopy evapotranspiration. Experimental and modelling studies reveal huge variations in these changes such that the warming associated with reduced evapotranspiration (known as physiological forcing) is neither well understood or constrained. Palaeo‐observations of changes in stomatal response and plant WUE under rising CO2 might be used to better understand the processes underlying the physiological forcing feedback and to link measured changes in plant WUE to a specific physiological change in stomata. Here we use time series of tree ring (Pinus sylvestris L.) δ13C and subfossil leaf (Betula nana L.) measurements of stomatal density and geometry to derive records of changes in intrinsic water‐use efficiency (iWUE) and maximum stomatal conductance in the Boreal zone of northern Finland and Sweden. We investigate the rate of change in both proxies, over the recent past. The independent lines of evidence from these two different Boreal species indicate increased iWUE and reduced maximum stomatal conductance of similar magnitude from preindustrial times (ca. ad 1850) to around ad 1970. After this maximum stomatal conductance continues to decrease to ad 2000 in B. nana but iWUE in P. sylvestris reaches a plateau. We suggest that northern boreal P. sylvestris might have reached a threshold in its ability to increase WUE as CO2 rises.  相似文献   

11.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

12.
The extent to which both water source and atmospheric humidity affect δ2H values of terrestrial plant leaf waxes will affect the interpretations of δ2H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long‐term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n‐alkane δ2H values of both species were linearly related to source water δ2H values, but with slope differences associated with differing humidities. When a modified version of the Craig–Gordon model incorporating plant factors was used to predict the δ2H values of leaf water, all modelled leaf water values fit the same linear relationship with n‐alkane δ2H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n‐alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species‐specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.  相似文献   

13.
14.
Northern terrestrial ecosystems have shown global warming‐induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO2 and 13C/12C seasonality. Here, we use four CO2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO2 and 13C/12C seasonality. Since the 1960s, the only significant long‐term trend of CO2 and 13C/12C seasonality was observed at the northern most station, Alert, where the spring CO2 drawdown dates advanced by 0.65 ± 0.55 days yr?1, contributing to a nonsignificant increase in length of the CO2 uptake period (0.74 ± 0.67 days yr?1). For Point Barrow station, vegetation phenology changes in well‐watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13C/12C seasonality while the CO2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13C depleted plant materials cancels out the 12C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming‐induced increases both in photosynthesis and respiration contribute to the long‐term stability of CO2 and 13C/12C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak‐to‐through CO2 amplitude. As the relative magnitude of the increased photosynthesis in summer months is more than the increased respiration in dormant months, we have the increased overall carbon uptake rates in the northern ecosystems.  相似文献   

15.
Evidence is presented for a very specific, seasonally recurring tri‐phase carbon isotope pattern in tree rings of broad‐leaf deciduous tree species. It is derived from highly resolved intra‐annual measurements of 13C/12C ratios of wood and cellulose from tree rings of Fagus sylvatica, Populus nigra, Quercus petraea and Morus alba. Investigations on δ13C from buds and leaves of Fagus sylvatica revealed a similar tri‐phase δ13C pattern. At the very beginning of a growing season, the δ13C trend of tree rings and foliage shows a marked increase of up to 5‰. The maximum δ13C‐value of each vegetation period always occurs in young heterotrophic leaves shortly after bud burst and persistently in the early wood of each tree ring, when growth depends on carbon reserves. Thereafter, δ13C profiles represent the autotrophic stage of the leaves, which show different patterns of variation, by and large characterized by a decline. The minimum δ13C‐value always shows up in the late wood of each tree ring. At the very end of each tree ring δ13C‐values start rising again. This increase in δ13C marks the gradual switch‐over to storage‐dependent growth and can also be observed in senescent leaves. Seasonal changes of more than 4‰ were measured, whereas contiguous δ13C values rarely differed from each other by more than 0.3‰. This tri‐phase pattern cannot be explained by the common model of carbon isotope fractionation during photosynthesis. It appears to be primarily an indication of seasonal changes in down‐stream processes of the carbohydrate metabolism. Environmental influences on the carbon isotope fractionation during photosynthesis are presumably of secondary importance and expressed by certain peculiarities showing up during the autotrophic phase, i.e. the mid‐section of the seasonal δ13C pattern.  相似文献   

16.
The δ13C values of atmospheric carbon dioxide (CO2) can be used to partition global patterns of CO2 source/sink relationships among terrestrial and oceanic ecosystems using the inversion technique. This approach is very sensitive to estimates of photosynthetic 13C discrimination by terrestrial vegetation (ΔA), and depends on δ13C values of respired CO2 fluxes (δ13CR). Here we show that by combining two independent data streams – the stable isotope ratios of atmospheric CO2 and eddy‐covariance CO2 flux measurements – canopy scale estimates of ΔA can be successfully derived in terrestrial ecosystems. We also present the first weekly dataset of seasonal variations in δ13CR from dominant forest ecosystems in the United States between 2001 and 2003. Our observations indicate considerable summer‐time variation in the weekly value of δ13CR within coniferous forests (4.0‰ and 5.4‰ at Wind River Canopy Crane Research Facility and Howland Forest, respectively, between May and September). The monthly mean values of δ13CR showed a smaller range (2–3‰), which appeared to significantly correlate with soil water availability. Values of δ13CR were less variable during the growing season at the deciduous forest (Harvard Forest). We suggest that the negative correlation between δ13CR and soil moisture content observed in the two coniferous forests should represent a general ecosystem response to the changes in the distribution of water resources because of climate change. Shifts in δ13CR and ΔA could be of sufficient magnitude globally to impact partitioning calculations of CO2 sinks between oceanic and terrestrial compartments.  相似文献   

17.
We present carbon stable isotope, δ13C, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that δ13C values derived from large‐scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem‐scale δ13C values. In this framework, we also tested the potential of δ13C in canopy air and plant organic matter to record regional‐scale ecophysiological patterns. Our network estimates for the mean δ13C of ecosystem respired CO2 and the related ‘discrimination’ of ecosystem respiration, δer and Δer, respectively, were ?25.6±1.9‰ and 17.8 ±2.0‰ in 2001 and ?26.6±1.5‰ and 19.0±1.6‰ in 2002. The results were in close agreement with δ13C values derived from regional‐scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional‐scale atmospheric sampling programs generally capture ecosystem δ13C signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in δer. From west to east, across the network, there was a general enrichment in 13C (~3‰ and ~1‰ for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal 13C enrichment between July and September, followed by depletion in November (from about ?26.0‰ to ?24.5‰ to ?30.0‰), was also observed. In 2001, July and August δer values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (Ta), but not significantly with monthly average precipitation (Pm). In contrast, in 2002 (a much wetter peak season), δer was significantly related with Ta, but not significantly with VPD and RH. The important role of plant physiological processes on δer in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time‐lag analyses of δer vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of δer and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the δer signal during this season. Organic matter δ13C results showed progressive 13C enrichment from leaves, through stems and roots to soil organic matter, which may be explained by 13C fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. δ13C values of organic matter of any of the plant components did not well represent short‐term δer values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components.  相似文献   

18.
The contribution of pre-defoliation reserves and current assimilates to leaf and root growth was examined in Lolium perenne L. during regrowth after defoliation. Differential steady-state labelling with 13C (CO2 with δ13C = -0.0281 and -0.0088) and 15N (NO3? with 1.0 and 0.368 atom percentage, i.e. δ15N = 1.742 and 0.0052, respectively) was applied for 2 weeks after defoliation. Rapidly growing tissues were isolated, i.e. the basal elongation and maturation zones of the most rapidly expanding leaves and young root tips, with a biomass turnover rate > 1 d?1. C and N weights of the elongation zone showed a transient decline. The dry matter and C concentration in fresh biomass of leaf growth zones transiently decreased by up to 25% 2 d after defoliation, while the N concentration remained constant. This ‘dilution’ of growth zone C indicates a decreased net influx of carbohydrates relative to growth-related influx of water and N in expanding cells, immediately after defoliation. Recovery of the total C and N weights of the leaf elongation zone coincided with net incorporation of currently absorbed C and N, as shown by the kinetics of δ13C and atom percentage 15N in the growth zones after defoliation. C isotope discrimination (Δ13C) in leaf growth zones was about 23‰, 1–2‰ higher than the Δ in root tips. Δ15N in the leaf and root growth zones was 10±3‰. The leaf elongation zones (at 0–0.03 m from the tiller base) and the distant root tips (about 0.2 m from the base) exhibited similar kinetics of current C and N incorporation. The amount of pre-defoliation C and N in the growth zones, expressed as a fraction of total C and N, decreased from 1.0 to 0.5 at 3 (C) and 5 (N) d after defoliation, and to 0.1 at 5 (C) and 14 (N) d after defoliation. Thus, the dependence of growth zones on current assimilate supply was significant, and stronger for C than for N. The important roles of current assimilates (as compared to pre-defoliation reserves) and ‘dilution’ of dry matter in regrowth after defoliation are discussed in relation to the method of labelling and the functional and morphological heterogeneity of shoot tissues.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号