首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the freezing resistance of leaves ex situ of 25 Australian alpine plant species. We compared the freezing resistance of forb, graminoid and shrub species from three alpine summits of different altitudes; from a low altitude site just above treeline, to a fully alpine tundra site. Foliar freezing resistance (LT50) in spring varied from ?5.9°C to ?18.7°C and standardized LT50 values within species were significantly related to site altitude. Additionally, when comparing all the species in the study, freezing resistance was significantly related to site; the LT50 of samples from a low‐altitude summit (1696 m) were significantly lower than those of samples from mid‐ (1805 m) and high‐altitude (1860 m) summits. The LT50 of juvenile foliage did not differ significantly from that of adult foliage. Shrubs were highly resistant to freezing. At the highest summit, we examined the course of seasonal freezing resistance from early summer to early autumn across three alpine plant communities that differed in the time of natural snowmelt; from sheltered (snowpatch) to exposed (open heath). No differences in freezing resistance over the growing season were detected for exposed or sheltered communities and there were no consistent trends indicating frost hardening over the growing season. Overall, the common Australian alpine species we investigated appear well adapted to freezing conditions throughout the snow‐free growing season. We have no evidence to suggest that freezing temperatures soon after snowmelt in spring are especially damaging to the alpine plants at these summits.  相似文献   

2.
Water repellency is a widespread characteristic of soils that can modify soil moisture content and distribution and is implicated in important processes such as aggregation and carbon sequestration. Repellency arises as a consequence of organic matter inputs; as elevated atmospheric CO2 is known to modify such inputs, we tested the repellency of a grassland soil after 5 years of exposure to elevated CO2 in a free air carbon dioxide enrichment experiment. Using a water droplet penetration time test, we found a significant reduction in repellency at elevated CO2 in samples at field moisture content. As many of the processes potentially influenced by repellency have been shown to be modified at elevated CO2 (e.g. soil aggregation, C sequestration, recruitment from seed), we suggest that further exploration of this phenomenon could enhance our understanding of CO2 effects on ecosystem function. The mechanism responsible for the change in repellency has not been identified.  相似文献   

3.
Hao XY  Han X  Li P  Yang HB  Lin ED 《应用生态学报》2011,22(10):2776-2780
利用FACE系统在大田条件下通过盆栽试验研究了大气CO2浓度升高[CO2浓度平均为(550+60) μmol·mo1-1]对绿豆叶片光合生理和叶绿素荧光参数的影响.结果表明:与对照[ CO2浓度平均为(389+40) μmol·mol-1左右]相比,大气CO2浓度升高使花荚期绿豆叶片净光合速率(Pn)和胞间CO2浓度(Ci)分别升高11.7%和9.8%,气孔导度(Gs)和蒸腾速率(Tr)分别下降32.0%和24.6%,水分利用效率(WUE)提高83.5%;在蕾期,CO2浓度升高对绿豆叶片叶绿素初始荧光(Fo)、最大荧光(Fm)、可变荧光(Fv)、Fv/Fm和Fv/Fo没有显著影响;在鼓粒期,CO2浓度升高使绿豆叶片Fo增加19.1%,Fm和Fv分别下降9.0%和14.3%,Fv/Fo和Fv/Fm分别下降25.8%和6.2%.表明大气CO2浓度升高可能使绿豆生长后期光系统Ⅱ反应中心结构受到破坏,叶片的光合能力下降.  相似文献   

4.
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m?2 year?1), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m?2 year?1. Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are, therefore, urgently needed.  相似文献   

5.
6.
* Flowering is a critical stage in plant life cycles, and changes might alter processes at the species, community and ecosystem levels. Therefore, likely flowering-time responses to global change drivers are needed for predictions of global change impacts on natural and managed ecosystems. * Here, the impact of elevated atmospheric CO2 concentration ([CO2]) (550 micromol mol(-1)) and warming (+2 masculineC) is reported on flowering times in a native, species-rich, temperate grassland in Tasmania, Australia in both 2004 and 2005. * Elevated [CO2] did not affect average time of first flowering in either year, only affecting three out of 23 species. Warming reduced time to first flowering by an average of 19.1 d in 2004, acting on most species, but did not significantly alter flowering time in 2005, which might be related to the timing of rainfall. Elevated [CO2] and warming treatments did not interact on flowering time. * These results show elevated [CO2] did not alter average flowering time or duration in this grassland; neither did it alter the response to warming. Therefore, flowering phenology appears insensitive to increasing [CO2] in this ecosystem, although the response to warming varies between years but can be strong.  相似文献   

7.
Understanding the responses of soil nitrous oxide (N2O) emissions from terrestrial ecosystems to future CO2 enrichment and warming is critical for the development of mitigation and adaptation policies. The effects of continuous increase in elevated CO2 (EC) and elevated temperature (ET) on N2O emissions are not fully known. We synthesized 209 measurements from 70 published studies and carried out a meta-analysis to examine individual and interactive effects of EC and ET on N2O emissions from grasslands, croplands and forests. On average, a significant increase of 23% in N2O emissions was observed under EC across all case studies. EC did not affect N2O emissions from grasslands or forests, but significantly increased N2O emissions in croplands by 38%. The extent of ET effects on N2O emissions was nonsignificant and there was no significant difference in N2O emission responses among these three terrestrial systems. ET only promoted N2O emissions in forest by about 32% when ET was less than 2°C. The interactive effect of EC and ET on N2O emissions was significantly synergistic, showing a greater increase than the sum of the effects caused by EC and ET alone. Our findings indicated that the combination of EC and ET substantially promoted soil N2O and highlighted the urgent need to explore its mechanisms to better understand N2O responses under future climate change.  相似文献   

8.
郝兴宇  韩雪  李萍  杨宏斌  林而达 《生态学杂志》2011,22(10):2776-2780
利用FACE系统在大田条件下通过盆栽试验研究了大气CO2浓度升高\[CO2浓度平均为(550±60) μmol·mol-1\]对绿豆叶片光合生理和叶绿素荧光参数的影响.结果表明: 与对照\[CO2浓度平均为(389±40)μmol·mol-1左右\]相比,大气CO2浓度升高使花荚期绿豆叶片净光合速率(Pn)和胞间CO2浓度(Ci)分别升高11.7%和9.8%,气孔导度(Gs)和蒸腾速率(Tr)分别下降32.0%和24.6%, 水分利用效率(WUE)提高83.5%;在蕾期,CO2浓度升高对绿豆叶片叶绿素初始荧光(Fo)、最大荧光(Fm)、可变荧光(Fv)、Fv/Fm和Fv/Fo没有显著影响;在鼓粒期,CO2浓度升高使绿豆叶片Fo增加19.1%,Fm和Fv分别下降9.0%和14.3%,Fv/Fo和Fv/Fm分别下降25.8%和6.2%.表明大气CO2浓度升高可能使绿豆生长后期光系统Ⅱ反应中心结构受到破坏,叶片的光合能力下降.  相似文献   

9.
Plants grown in elevated [CO2] have lower protein and mineral concentrations compared with plants grown in ambient [CO2]. Dilution by enhanced production of carbohydrates is a likely cause, but it cannot explain all of the reductions. Two proposed, but untested, hypotheses are that (1) reduced canopy transpiration reduces mass flow of nutrients to the roots thus reducing nutrient uptake and (2) changes in metabolite or enzyme concentrations caused by physiological changes alter requirements for minerals as protein cofactors or in other organic complexes, shifting allocation between tissues and possibly altering uptake. Here, we use the meta‐analysis of previous studies in crops to test these hypotheses. Nutrients acquired mostly by mass flow were decreased significantly more by elevated [CO2] than nutrients acquired by diffusion to the roots through the soil, supporting the first hypothesis. Similarly, Mg showed large concentration declines in leaves and wheat stems, but smaller decreases in other tissues. Because chlorophyll requires a large fraction of total plant Mg, and chlorophyll concentration is reduced by growth in elevated [CO2], this supports the second hypothesis. Understanding these mechanisms may guide efforts to improve nutrient content, and allow modeling of nutrient changes and health impacts under future climate change scenarios.  相似文献   

10.
Iron (Fe) and zinc (Zn) deficiencies are a global human health problem that may worsen by the growth of crops at elevated atmospheric CO2 concentration (eCO2). However, climate change will also involve higher temperature, but it is unclear how the combined effect of eCO2 and higher temperature will affect the nutritional quality of food crops. To begin to address this question, we grew soybean (Glycine max) in a Temperature by Free‐Air CO2 Enrichment (T‐FACE) experiment in 2014 and 2015 under ambient (400 μmol mol?1) and elevated (600 μmol mol?1) CO2 concentrations, and under ambient and elevated temperatures (+2.7°C day and +3.4°C at night). In our study, eCO2 significantly decreased Fe concentration in soybean seeds in both seasons (?8.7 and ?7.7%) and Zn concentration in one season (?8.9%), while higher temperature (at ambient CO2 concentration) had the opposite effect. The combination of eCO2 with elevated temperature generally restored seed Fe and Zn concentrations to levels obtained under ambient CO2 and temperature conditions, suggesting that the potential threat to human nutrition by increasing CO2 concentration may not be realized. In general, seed Fe concentration was negatively correlated with yield, suggesting inherent limitations to increasing seed Fe. In addition, we confirm our previous report that the concentration of seed storage products and several minerals varies with node position at which the seeds developed. Overall, these results demonstrate the complexity of predicting climate change effects on food and nutritional security when various environmental parameters change in an interactive manner.  相似文献   

11.
大气一氧化碳浓度升高对植物生长的影响   总被引:18,自引:2,他引:18  
大气CO2浓度同对植物生长有促进作用,对C3植物生长的促进作用最大。短期CO2浓度升高时,植物光和速率增加;在长期CO2浓度升高条件下,植物光鸽上降并发生光合适应现象。这可能是植物在长期CO2浓度升高条件下植物源库关系不平衡引起的反馈抑制作用以及营养吸收不能满足光合速率增加的需要所引起Rubiseo活必和含量下降。在CO2浓度升高条件下植物的呼吸也会发生变化,根的分枝和数量增多,根系的分泌量和吸收  相似文献   

12.
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   

13.
14.
15.
The ecological impacts of long‐term elevated atmospheric CO2 (eCO2) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two‐thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high‐resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free‐air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old‐growth (>100 years) semi‐natural grasslands subjected to a 20% increase in atmospheric CO2. eCO2 significantly increased AM fungal richness but had a less‐pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO2. Most population‐level responses to eCO2 were not consistent through time, with a significant interaction between sampling time and eCO2 treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO2 may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad‐scale community‐level responses of soil microbes observed on single occasions.  相似文献   

16.
Abstract. Very little attention has been directed at the responses of tropical plants to increases in global atmospheric CO2 concentrations and the potential climatic changes. The available data, from greenhouse and laboratory studies, indicate that the photosynthesis, growth and water use efficiency of tropical plants can increase at higher CO2 concentrations. However, under field conditions abiotic (light, water or nutrients) or biotic (competition or herbivory) factors might limit these responses. In general, elevated atmospheric CO2 concentrations seem to increase plant tolerance to stress, including low water availability, high or low temperature, and photoinhibition. Thus, some species may be able to extend their ranges into physically less favourable sites, and biological interactions may become relatively more important in determining the distribution and abundance of species. Tropical plants may be more narrowly adapted to prevailing temperature regimes than are temperate plants, so expected changes in temperature might be relatively more important in the tropics. Reduced transpiration due to decreased stomatal conductance could modify the effects of water stress as a cue for vegetative or reproductive phenology of plants of seasonal tropical areas. The available information suggests that changes in atmospheric CO2 concentrations could affect processes as varied as plant/herbivore interactions, decomposition and nutrient cycling, local and geographic distributions of species and community types, and ecosystem productivity. However, data on tropical plants are few, and there seem to be no published tropical studies carried out in the field. Immediate steps should be undertaken to reduce our ignorance of this critical area.  相似文献   

17.
We investigated whether the degree of light inhibition of leaf respiration (R) differs among large Eucalyptus saligna grown in whole‐tree chambers and exposed to present and future atmospheric [CO2] and summer drought. Associated with month‐to‐month changes in temperature were concomitant changes in R in the light (Rlight) and darkness (Rdark), with both processes being more temperature dependent in well‐watered trees than under drought. Overall rates of Rlight and Rdark were not significantly affected by [CO2]. By contrast, overall rates of Rdark (averaged across both [CO2]) were ca. 25% lower under drought than in well‐watered trees. During summer, the degree of light inhibition of leaf R was greater in droughted (ca. 80% inhibition) than well‐watered trees (ca. 50% inhibition). Notwithstanding these treatment differences, an overall positive relationship was observed between Rlight and Rdark when data from all months/treatments were combined (R2 = 0.8). Variations in Rlight were also positively correlated with rates of Rubisco activity and nitrogen concentration. Light inhibition resulted in a marked decrease in the proportion of light‐saturated photosynthesis respired (i.e. reduced R/Asat). Collectively, these results highlight the need to account for light inhibition when assessing impacts of global change drivers on the carbon economy of tree canopies.  相似文献   

18.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

19.
Understanding the impacts of atmospheric [CO2] and drought on leaf respiration (R) and its response to changes in temperature is critical to improve predictions of plant carbon‐exchange with the atmosphere, especially at higher temperatures. We quantified the effects of [CO2]‐enrichment (+240 ppm) on seasonal shifts in the diel temperature response of R during a moderate summer drought in Eucalyptus saligna growing in whole‐tree chambers in SE Australia. Seasonal temperature acclimation of R was marked, as illustrated by: (1) a downward shift in daily temperature response curves of R in summer (relative to spring); (2)≈60% lower R measured at 20oC (R20) in summer compared with spring; and (3) homeostasis over 12 months of R measured at prevailing nighttime temperatures. R20, measured during the day, was on average 30–40% higher under elevated [CO2] compared with ambient [CO2] across both watered and droughted trees. Drought reduced R20 by≈30% in both [CO2] treatments resulting in additive treatment effects. Although [CO2] had no effect on seasonal acclimation, summer drought exacerbated the seasonal downward shift in temperature response curves of R. Overall, these results highlight the importance of seasonal acclimation of leaf R in trees grown under ambient‐ and elevated [CO2] as well as under moderate drought. Hence, respiration rates may be overestimated if seasonal changes in temperature and drought are not considered when predicting future rates of forest net CO2 exchange.  相似文献   

20.
Rising atmospheric CO2 concentrations are expected to increase nitrous oxide (N2O) emissions from soils via changes in microbial nitrogen (N) transformations. Several studies have shown that N2O emission increases under elevated atmospheric CO2 (eCO2), but the underlying processes are not yet fully understood. Here, we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO2, +20% relative to ambient concentrations (aCO2), for 15 years. We applied in the field an ammonium‐nitrate fertilizer solution, in which either ammonium () or nitrate () was labelled with 15N. The simultaneous gross N transformation rates were analysed with a 15N tracing model and a solver method. The results confirmed that after 15 years of eCO2 the N2O emissions under eCO2 were still more than twofold higher than under aCO2. The tracing model results indicated that plant uptake of did not differ between treatments, but uptake of was significantly reduced under eCO2. However, the and availability increased slightly under eCO2. The N2O isotopic signature indicated that under eCO2 the sources of the additional emissions, 8,407 μg N2O–N/m2 during the first 58 days after labelling, were associated with reduction (+2.0%), oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased plant growth and root exudation under eCO2 provided an additional source of bioavailable supply of energy that triggered as a priming effect the stimulation of microbial soil organic matter (SOM) mineralization and fostered the activity of the bacterial nitrite reductase. The resulting increase in incomplete denitrification and therefore an increased N2O:N2 emission ratio, explains the doubling of N2O emissions. If this occurs over a wide area of grasslands in the future, this positive feedback reaction may significantly accelerate climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号