首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells.  相似文献   

2.
Syntrophobacter fumaroxidans is a sulfate‐reducing bacterium able to grow on propionate axenically or in syntrophic interaction with methanogens or other sulfate‐reducing bacteria. We performed a proteome analysis of S. fumaroxidans growing with propionate axenically with sulfate or fumarate, and in syntrophy with Methanospirillum hungatei, Methanobacterium formicicum or Desulfovibrio desulfuricans. Special attention was put on the role of hydrogen and formate in interspecies electron transfer (IET) and energy conservation. Formate dehydrogenase Fdh1 and hydrogenase Hox were the main confurcating enzymes used for energy conservation. In the periplasm, Fdh2 and hydrogenase Hyn play an important role in reverse electron transport associated with succinate oxidation. Periplasmic Fdh3 and Fdh5 were involved in IET. The sulfate reduction pathway was poorly regulated and many enzymes associated with sulfate reduction (Sat, HppA, AprAB, DsrAB and DsrC) were abundant even at conditions where sulfate was not present. Proteins similar to heterodisulfide reductases (Hdr) were abundant. Hdr/Flox was detected in all conditions while HdrABC/HdrL was exclusively detected when sulfate was available; these complexes most likely confurcate electrons. Our results suggest that S. fumaroxidans mainly used formate for electron release and that different confurcating mechanisms were used in its sulfidogenic metabolism.  相似文献   

3.
4.
5.
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.  相似文献   

6.
7.
8.
The operon of the anabolic pyruvate oxidoreductase (POR) of Methanococcus maripaludis encodes two genes (porEF) whose functions are unknown. Because these genes possess sequence similarity to polyferredoxins, they may be electron carriers to the POR. To elucidate whether the methanococcal POR requires PorEF for activity, a deletion mutant, strain JJ150, lacking porEF was constructed. Compared to the wild-type strain JJ1, the mutant grew more slowly in minimal medium and minimal plus acetate medium, and pyruvate-dependent methanogenesis was inhibited. In contrast, the methyl-viologen-dependent pyruvate-oxidation activity of POR, carbon monoxide dehydrogenase, and hydrogenase activities of the mutant were similar to those of the wild-type. Upon genetic complementation of the mutant with porEF in the methanococcal shuttle vector pMEV2+porEF, growth in minimal medium and pyruvate-dependent methanogenesis were restored to wild-type levels. Complementation with porE alone restored methanogenesis from pyruvate but not growth in minimal medium. Complementation with porF alone partially restored growth but not methanogenesis from pyruvate. Although the specific roles of porE and porF have not been determined, these results suggest that PorEF play important roles in the anabolic POR in vivo even though they are not required for the dye-dependent activity.Abbreviations CODH/ACS Carbon monoxide dehydrogenase/acetyl-CoA synthase - POR Pyruvate oxidoreductase  相似文献   

9.
10.
Archaeal microbial communities present in municipal solid waste landfill leachates were characterized using a 16S rDNA approach. Phylogenetic affiliations of 239 partial length 16S rDNA sequences were determined. Sequences belonging to the order Methanosarcinales were dominant in the clone library and 65% of the clones belonged to the strictly acetoclastic methanogenic family Methanosaetaceae. Sequences affiliated to the metabolically versatile family Methanosarcinaceae represented 18% of the retrieved sequences. Members of the hydrogenotrophic order Methanomicrobiales were also recovered in limited numbers, especially sequences affiliated to the genera Methanoculleus and Methanofollis. Eleven euryarchaeal and thirteen crenarchaeal sequences (i.e. 10%) were distantly related to any hitherto cultivated microorganisms, showing that archaeal diversity within the investigated samples was limited. Lab-scale incubations were performed with leachates mixed with several methanogenic precursors (acetate, hydrogen, formate, methanol, methylamine). Microbial populations were followed using group specific 16S rRNA targeted fluorescent oligonucleotidic probes. During the incubations with acetate, acetoclastic methanogenesis was rapidly induced and led to the dominance of archaea hybridizing with probe MS1414 which indicates their affiliation to the family Methanosarcinaceae. Hydrogen and formate addition induced an important acetate synthesis resulting from the onset of homoacetogenic metabolism. In these incubations, species belonging to the family Methanosarcinaceae (hybridizing with probe MS1414) and the order Methanomicrobiales (hybridizing with probe EURY496) were dominant. Homoacetogenesis was also recorded for incubations with methanol and methylamines. In the methanol experiment, acetoclastic methanogenesis took place and archaea hybridizing with probe MS821 (specific for Methanosarcina spp.) were observed to be the dominant population. These results confirm that acetoclastic methanogenesis performed by the members of the order Methanosarcinales is predominant over the hydrogenotrophic and methylotrophic pathways in landfill leachates.  相似文献   

11.
Coenzyme M (CoM, 2-mercaptoethanesulfonate), once thought to be exclusively produced by methanogens, is now known to be the central cofactor in the metabolism of short-chain alkenes by a variety of aerobic bacteria. There is little evidence to suggest how, and under what conditions, CoM is biosynthesized by these organisms. A shotgun proteomics approach was used to investigate CoM-dependent propylene metabolism in the Gram-negative bacterium Xanthobacter autotrophicus Py2. Cells were grown on either glucose or propylene, and the soluble proteomes were analyzed. An average of 395 proteins was identified from glucose-grown replicates, with an average of 419 identified from propylene-grown replicates. A number of linear megaplasmid (pXAUT01)-encoded proteins were found to be specifically produced by growth on propylene. These included all known to be crucial to propylene metabolism, in addition to an aldehyde dehydrogenase, a DNA-binding protein, and five putative CoM biosynthetic enzymes. This work has provided fresh insight into bacterial alkene metabolism and has generated new targets for future studies in X. autotrophicus Py2 and related CoM-dependent alkene-oxidizing bacteria.  相似文献   

12.
Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31–39CCX35–36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) 57Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four 57Fe hyperfine couplings to the cluster in all three proteins. 13C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. 57Fe resonances in all three systems revealed unusually large 57Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster’s unique magnetic properties arise from the CCG binding motif.  相似文献   

13.
Summary: Coenzyme M (2-mercaptoethanesulfonate; CoM) is one of several atypical cofactors discovered in methanogenic archaea which participate in the biological reduction of CO2 to methane. Elegantly simple, CoM, so named for its role as a methyl carrier in all methanogenic archaea, is the smallest known organic cofactor. It was thought that this cofactor was used exclusively in methanogenesis until it was recently discovered that CoM is a key cofactor in the pathway of propylene metabolism in the gram-negative soil microorganism Xanthobacter autotrophicus Py2. A four-step pathway requiring CoM converts propylene and CO2 to acetoacetate, which feeds into central metabolism. In this process, CoM is used to activate and convert highly electrophilic epoxypropane, formed from propylene epoxidation, into a nucleophilic species that undergoes carboxylation. The unique properties of CoM provide a chemical handle for orienting compounds for site-specific redox chemistry and stereospecific catalysis. The three-dimensional structures of several of the enzymes in the pathway of propylene metabolism in defined states have been determined, providing significant insights into both the enzyme mechanisms and the role of CoM in this pathway. These studies provide the structural basis for understanding the efficacy of CoM as a handle to direct organic substrate transformations at the active sites of enzymes.  相似文献   

14.
Coenzyme M (CoM; 2-mercaptoethanesulfonic acid) is the terminal methyl carrier in methanogenesis. Methanogenic archaea begin the production of this essential cofactor by sulfonating phosphoenolpyruvate to form 2-phospho-3-sulfolactate. After dephosphorylation, this precursor is oxidized, decarboxylated and then reductively thiolated to form CoM. A thermostable phosphosulfolactate phosphohydrolase (EC 3.1.3.-) catalyzing the second step in CoM biosynthesis, was identified in the hyperthermophilic euryarchaeon Methanococcus jannaschii. The predicted ORF MJ1140 in the genome of M. jannaschii encodes ComB, a Mg2+-dependent acid phosphatase that is specific for 2-hydroxycarboxylic acid phosphate esters. Recombinantly expressed purified ComB efficiently hydrolyzes rac-2-phosphosulfolactate, (S)-2-phospholactate, phosphoglycolate and both enantiomers of 2-phosphomalate. In contrast to previously studied phosphoglycolate phosphatases, ComB has a low pH optimum for activity, a narrow substrate specificity and an amino acid sequence dissimilar to any biochemically characterized protein. Like other phosphatases that function via covalent phosphoenzyme intermediates, ComB can catalyze a transphosphorylation reaction. Homologs of comB are identified in all available cyanobacterial genome sequences and in genomes from phylogenetically diverse bacteria and archaea; most of these organisms lack homologs of other CoM biosynthetic genes. The broad and disparate distribution of comB homologs suggests that the gene has been recruited frequently into new metabolic pathways.  相似文献   

15.
Trophic links between fermentation and methanogenesis of soil derived from a methane‐emitting, moderately acidic temperate fen (pH 4.5) were investigated. Initial CO2:CH4 production ratios in anoxic microcosms indicated that methanogenesis was concomitant to other terminal anaerobic processes. Methane production in anoxic microcosms at in situ pH was stimulated by supplemental H2–CO2, formate or methanol; supplemental acetate did not stimulate methanogenesis. Supplemental H2–CO2, formate or methanol also stimulated the formation of acetate, indicating that the fen harbours moderately acid‐tolerant acetogens. Supplemental monosaccharides (glucose, N‐acetylglucosamine and xylose) stimulated the production of CO2, H2, acetate and other fermentation products when methanogenesis was inhibited with 2‐bromoethane sulfonate 20 mM. Glucose stimulated methanogenesis in the absence of BES. Upper soil depths yielded higher anaerobic activities and also higher numbers of cells. Detected archaeal 16S rRNA genes were indicative of H2–CO2‐ and formate‐consuming methanogens (Methanomicrobiaceae), obligate acetoclastic methanogens (Methanosaetaceae) and crenarchaeotes (groups I.1a, I.1c and I.3). Molecular analyses of partial sequences of 16S rRNA genes revealed the presence of Acidobacteria, Nitrospirales, Clamydiales, Clostridiales, Alpha‐, Gamma‐, Deltaproteobacteria and Cyanobacteria. These collective results suggest that this moderately acidic fen harbours phylogenetically diverse, moderately acid tolerant fermenters (both facultative aerobes and obligate anaerobes) that are trophically linked to methanogenesis.  相似文献   

16.
Various organic sulfides and inorganic sulfide were studied in respect to their effect on growth and methane production of Methanobacterium strain AZ. In mineral, sulfide-free medium, cysteine regulated the specific rate of methane production (optimum concentration =5·10–4 mole/l). A supplement of sulfide (10–4 mole/l) caused an additional stimulation. Coenzyme M** or glutathione could be substituted for cysteine when sulfide was present. Growth was stimulated by CoM and glutathione to the same extent as with cysteine in sulfide-containing media. The concentration of sulfide in cysteine-containing media affected the excretion of amino acids.Abbreviations CoM Coenzyme M; HS–CH2–CH2–SO3 (Taylor and Wolfe, 1974)  相似文献   

17.
The 40S ribosomal protein S6 kinase (S6K) is a conserved component of signalling pathways controlling growth in eukaryotes. To study S6K function in plants, we isolated single‐ and double‐knockout mutations and RNA‐interference (RNAi)‐silencing lines in the linked Arabidopsis S6K1 and S6K2 genes. Hemizygous s6k1s6k2/++ mutant and S6K1 RNAi lines show high phenotypic instability with variation in size, increased trichome branching, produce non‐viable pollen and high levels of aborted seeds. Analysis of their DNA content by flow cytometry, as well as chromosome counting using DAPI staining and fluorescence in situ hybridization, revealed an increase in ploidy and aneuploidy. In agreement with this data, we found that S6K1 associates with the Retinoblastoma‐related 1 (RBR1)–E2FB complex and this is partly mediated by its N‐terminal LVxCxE motif. Moreover, the S6K1–RBR1 association regulates RBR1 nuclear localization, as well as E2F‐dependent expression of cell cycle genes. Arabidopsis cells grown under nutrient‐limiting conditions require S6K for repression of cell proliferation. The data suggest a new function for plant S6K as a repressor of cell proliferation and required for maintenance of chromosome stability and ploidy levels.  相似文献   

18.
Proper hyphal morphogenesis is essential for the establishment and progression of invasive disease caused by filamentous fungi. In the human pathogen Aspergillus fumigatus, signalling cascades driven by Ras and Ras‐like proteins orchestrate a wide variety of cellular processes required for hyphal growth. For activation, these proteins require interactions with Ras‐subfamily‐specific guanine nucleotide exchange factors (RasGEFs). Although Ras‐protein networks are essential for virulence in all pathogenic fungi, the importance of RasGEF proteins is largely unexplored. Afumigatus encodes four putative RasGEFs that represent three separate classes of RasGEF proteins (SH3‐, Ras guanyl nucleotide‐releasing protein [RasGRP]–, and LTE‐class), each with fungus‐specific attributes. Here, we show that the SH3‐class and RasGRP‐class RasGEFs are required for properly timed polarity establishment during early growth and branch emergence as well as for cell wall stability. Further, we show that SH3‐class RasGEF activity is essential for polarity establishment and maintenance, a phenotype that is, at least, partially independent of the major Afumigatus Ras proteins, RasA and RasB. Finally, loss of both SH3‐class RasGEFs resulted in avirulence in multiple models of invasive aspergillosis. Together, our findings suggest that RasGEF activity is essential for the integration of multiple signalling networks to drive invasive growth in Afumigatus.  相似文献   

19.
The gene encoding dihydrofolate reductase, hdrA, from the extremely halophilic archaeon Haloferax volcanii was previously isolated from a spontaneous trimethoprim-resistant mutant in a DNA sequence that had undergone amplification. Here, we show that deletion of hdrA did not affect growth in minimal medium and that the strain carrying the deletion remained sensitive to trimethoprim. A spontaneous trimethoprim-resistant colony was isolated in the hdrA deletion strain and found to possess a new DNA amplification. Sequencing of the amplification revealed a second, substantially different, dihydrofolate reductase gene, hdrB, which was found to be located immediately downstream of the thymidylate synthase gene, hts. The physiological role of hDHFR-1 and hDHFR-2 was determined by generating Haloferax volcanii strains in which each gene, hdrA or hdrB, or both genes were deleted. It was found that hdrB alone can support growth of Haloferax volcanii in minimal medium, whereas hdrA alone can support growth of Haloferax volcanii in minimal medium only when the medium is supplemented with thymidine. It was also shown that, in contrast to Escherichia coli, the DeltahdrA, DeltahdrB double deletion mutant is viable in the presence of a functional thymidylate synthase gene. The hdrB gene was overexpressed in Escherichia coli and the enzyme purified to homogeneity. The biochemical properties of the new enzyme (hDHFR-2) are markedly different from those of hDHFR-1. The use of the dihydrofolate reductase and thymidylate synthase genes as stable selectable markers is described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号