首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that subunits E (eIF3e), F (eIF3f) and H (elF3h) of eukaryotic translation initiation factor 3 play important roles in cell development in humans and yeast. eIF3e and eIF3h have also been reported to be important for normal cell growth in Arabidopsis. However, the functions of subunit eIF3f remain largely unknown in plant species. Here we report characterization of mutants for the Arabidopsis eIF3f (AteIF3f) gene. AteIF3f encodes a protein that is highly expressed in pollen grains, developing embryos and root tips, and interacts with Arabidopsis eIF3e and eIF3h proteins. A Ds insertional mutation in AteIF3f disrupted pollen germination and embryo development. Expression of some of the genes that are essential for pollen tube growth and embryogenesis is down‐regulated in ateif3f‐1 homozygous seedlings obtained by pollen rescue. These results suggested that AteIF3f might play important roles in Arabidopsis cell growth and differentiation in combination with eIF3e and eIF3h.  相似文献   

2.
Eukaryotic translation initiation factor 5A (eIF5A) is thoughtto facilitate protein synthesis by participating in the nuclearexport of specific mRNAs. In Arabidopsis, there are three isoformsof eIF5A. One of them, AteIF5A1, has been shown to be expressedin vascular tissue, specifically developing vessel members,using GUS as a reporter. In order to determine whether AteIF5A1plays a role in xylem formation, its full-length cDNA was constitutivelyover-expressed in transgenic Arabidopsis plants. Microscopicanalysis revealed that the cross-sectional area of the xylemin the main inflorescence stems of transgenic plants was 1.9-foldhigher than those of corresponding inflorescence stems of wild-typeplants. In wild-type stems, the primary xylem typically comprisedsix cell layers and was 105 µm thick, but increased to9–11 cell layers, 140–155 µm thick, in transgenicstems. Similarly, the secondary xylem increased from six celllayers, 70 µm thick, in control stems to 9 cell layers,95–105 µm thick, in transgenic stems. Moreover,constitutive down-regulation of AteIF5A1 using antisense technologyresulted in the major suppression of xylem formation comparedwith control plants, and the antisense transgenic plants werealso stunted. These data collectively indicate that eIF5A1 playsa role in xylogenesis. Key words: Arabidopsis thaliana, eukaryotic translation initiation factor 5A, inflorescence stem, xylem Received 5 November 2007; Revised 26 December 2007 Accepted 10 January 2008  相似文献   

3.
Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild‐type Columbia‐0 (Col‐0) with a knockdown mutant of AteIF5A‐2, fbr12‐3 under Cd stress conditions. The results showed that the mutant fbr12‐3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A‐2 makes the mutant more Cd sensitive. Real‐time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12‐3 compared with Col‐0. As a result, an increase in MDA and H2O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.  相似文献   

4.
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein known to contain the unusual amino acid hypusine. It is a highly conserved protein found in all eukaryotic organisms. Although originally identified as a translation initiation factor, recent studies suggest that eIF5A is mainly involved in translation elongation, mRNA turnover and decay, cell proliferation, and programmed cell death. However, the precise cellular function of eIF5A remains largely unknown, especially in plants. Here, we report the identification and characterization of RceIF5A from Rosa chinensis. RceIF5A expression is up-regulated in Rosa chinensis under high temperature, and oxidative and osmotic stress conditions. We produced transgenic Arabidopsis that constitutively enhanced or suppressed expression of RceIF5A. The RceIF5A over-expression plants exhibited increased resistance to heat, and oxidative and osmotic stresses, while the suppressed expression plants (three AteIF5A isoforms in Arabidopsis were down-regulated) showed more susceptibility to these stresses. These results reveal a new physiological role for eIF5A in plants and contribute to the elucidation of the molecular mechanisms involved in the stress response pathway.  相似文献   

5.
6.
Genetically engineered pollen with a visible marker gene could be useful to monitor the movement of transgenic pollen provided there are no negative physiological or fitness effects of expressing such a gene. In this study, we measured the fitness of Nicotiana tabacum cv. Xanthi pollen expressing the marker gene green fluorescent protein (GFP). Average pollen tube germination frequencies and pollen tube growth rates in vitro were measured in three different types of plants: (1) plants producing GFP in pollen cells only (LAT59-GFP), (2) plants synthesizing GFP under the control of a constitutive promoter (CaMV 35S) in which no GFP was produced in pollen, and (3) non-transgenic plants. Pollen synthesizing the GFP protein did not differ significantly in average pollen germination frequencies from pollen without GFP (P=0.65). Average pollen tube growth rates over a 5-h period did not differ significantly between transgenic and non-transgenic types (R2=0.89, 0.98, and 0.95, respectively, for GFP-tagged, 35S-GFP, and wild type). Overall, GFP expression in pollen grains of tobacco was not found to have an effect on pollen fitness under the controlled experimental conditions of this study.  相似文献   

7.
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T‐DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.  相似文献   

8.
Little is known about the translocation of proteins and other macromolecules from a host plant to the parasitic weed Phelipanche spp. Long-distance movement of proteins between host and parasite was explored using transgenic tomato plants expressing green fluorescent protein (GFP) in their companion cells. We further used fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite. Accumulation of GFP was observed in the central vascular bundle of leaves and in the root phloem of transgenic tomato plants expressing GFP under the regulation of AtSUC2 promoter. When transgenic tomato plants expressing GFP were parasitized with P. aegyptiaca, extensive GFP was translocated from the host phloem to the parasite phloem and accumulated in both Phelipanche tubercles and shoots. No movement of GFP to the parasite was observed when tobacco plants expressing GFP targeted to the ER were parasitized with P. aegyptiaca. Experiments using fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite demonstrated that Phelipanche absorbs dextrans up to 70 kDa in size from the host and that this movement can be bi-directional. In the present study, we prove for the first time delivery of proteins from host to the parasitic weed P. aegyptiaca via phloem connections, providing information for developing parasite resistance strategies.  相似文献   

9.
Caleosins: Ca2+-binding proteins associated with lipid bodies   总被引:8,自引:0,他引:8  
We have previously identified a rice gene encoding a 27 kDa protein with a single Ca2+-binding EF-hand and a putative membrane anchor. We report here similar genes termed caleosins, CLO, in other plants and fungi; they comprise a multigene family of at least five members in Arabidopsis (AtClo1–5). Northern hybridization demonstrated that AtClo2–4 mRNAs levels were low in various tissues, while AtClo1 mRNA levels were high in developing embryos and mature seeds. Analysis of transgenic Arabidopsis plants expressing the GUS reporter under control of the AtClo1 promoter showed strong levels of expression in developing embryos and also in root tip cells. Antibodies raised against AtCLO1 were used to detect caleosin in cellular fractions of Arabidopsis and rapeseed. This indicated that caleosins are a novel class of lipid body proteins, which may also be associated with an ER subdomain.  相似文献   

10.
The eukaryotic initiation factor 4E (eIF4E) emerged recently as a target for different types of regulation affecting translation. In animal and yeast cells, eIF4E-binding proteins modulate the availability of eIF4E. A search for plant eIF4E-binding proteins from Arabidopsis thaliana using the yeast genetic interaction system identified a clone encoding a lipoxygenase type 2 (AtLOX2). In vitro and in vivo biochemical assays confirm an interaction between AtLOX2 and plant eIF4E(iso) factor. A two-hybrid assay revealed that AtLOX2 is also able to interact with both wheat initiation factors 4E and 4E(iso). Deletion analysis maps the region of AtLOX2 involved in interaction with AteIF(iso)4E between amino acids 175 and 232. A sequence related to the conserved motif present in several eIF4E-binding proteins was found in this region. Furthermore, the wheat p86 subunit, a component of the plant translation eIF(iso)4F complex, was found to interfere with the AteIF(iso)4E-AtLOX2 interaction suggesting that p86 and AtLOX2 compete for the same site on eIF(iso)4E. These results may reflect a link between eIF4Es factors mediating translational control with LOX2 activity, which is probably conserved throughout the plant kingdom.  相似文献   

11.
Phosphatidylglycerol (PG) is an indispensable lipid constituent of photosynthetic membranes, whose function is essential in photosynthetic activity. In higher plants, the biological function of the last step of PG biosynthesis remains elusive because an enzyme catalyzing this reaction step, namely phosphatidylglycerophosphate phosphatase (PGPP), has been a missing piece in the entire glycerolipid metabolic map. Here, we report the identification and characterization of AtPGPP1 encoding a PGPP in Arabidopsis thaliana. Heterologous expression of AtPGPP1 in yeast Δgep4 complemented growth phenotype and PG‐producing activity, suggesting that AtPGPP1 encodes a functional PGPP. The GUS reporter assay showed that AtPGPP1 was preferentially expressed in hypocotyl, vasculatures, trichomes, guard cells, and stigmas. A subcellular localization study with GFP reporter indicated that AtPGPP1 is mainly localized at chloroplasts. A T‐DNA‐tagged knockout mutant of AtPGPP1, designated pgpp1‐1, showed pale green phenotype with reduced PG and chlorophyll contents but no defect in embryo development. In the pgpp1‐1 mutant, ultrastructure of plastids indicated defective development of chloroplasts and measurement of photosynthetic parameters showed impaired photosynthetic activity. These results suggest that AtPGPP1 is a primary plastidic PGPP required for PG biosynthesis and photosynthetic function in Arabidopsis.  相似文献   

12.
13.
拟南芥(Arabidopsis thaliana)砷诱导基因At4g13180编码蛋白是短链脱氢酶(Short-Chain Dehydrogenase/Reductase Superfamily,SDR)家族的成员之一,其过表达可以增强植物对过氧化氢的耐受性。该实验通过半定量RT-PCR,构建ProAt4g13180:GUS、At4g13180-EGFP和At4g13180-OE表达载体,获得At4g13180基因过表达转基因株系,并研究了At4g13180基因的表达模式及其编码蛋白的亚细胞定位。结果显示,At4g13180基因在根尖、叶脉、萼片和花丝等组织都强烈表达,该基因编码蛋白主要定位于胞质和核中。该研究结果为深入探究拟南芥砷诱导基因At4g13180的功能奠定了一定的基础。  相似文献   

14.
15.
The type III effector DspA/E is an essential pathogenicity factor of the phytopathogenic bacterium Erwinia amylovora. We showed that DspA/E was required for transient bacterial growth in nonhost Arabidopsis thaliana leaves, as an E. amylovora dspA/E mutant was unable to grow. We expressed DspA/E in A. thaliana transgenic plants under the control of an oestradiol‐inducible promoter, and found that DspA/E expressed in planta restored the growth of a dspA/E mutant. DspA/E expression in these transgenic plants led to the modulation by at least two‐fold of the expression of 384 genes, mostly induced (324 genes). Both induced and repressed genes contained high proportions of defence genes. DspA/E expression ultimately resulted in plant cell death without requiring a functional salicylic acid signalling pathway. Analysis of A. thaliana transgenic seedlings expressing a green fluorescent protein (GFP):DspA/E fusion indicated that the fusion protein could only be detected in a few cells per seedling, suggesting the degradation or absence of accumulation of DspA/E in plant cells. Consistently, we found that DspA/E repressed plant protein synthesis when injected by E. amylovora or when expressed in transgenic plants. Thus, we conclude that DspA/E is toxic to A. thaliana: it promotes modifications, among which the repression of protein synthesis could be determinant in the facilitation of necrosis and bacterial growth.  相似文献   

16.
17.
Transgenic plants can be designed to be ‘phytosensors’ for detection of environmental contaminants and pathogens. In this study, we describe the design and testing of a radiation phytosensor in the form of green fluorescence protein (GFP)‐transgenic Arabidopsis plant utilizing a DNA repair deficiency mutant background as a host. Mutant lines of Arabidopsis AtATM (At3g48190), which are hypersensitive to gamma irradiation, were used to generate stable GFP transgenic plants in which a gfp gene was under the control of a strong constitutive CaMV 35S promoter. Mutant and nonmutant genetic background transgenic plants were treated with 0, 1, 5, 10 and 100 Gy radiation doses, respectively, using a Co‐60 source. After 1 week, the GFP expression levels were drastically reduced in young leaves of mutant background plants (treated by 10 and 100 Gy), whereas there were scant visible differences in the fluorescence of the nonmutant background plants. These early results indicate that transgenic plants could serve in a relevant sensor system to report radiation dose and the biological effects to organisms in response to radionuclide contamination.  相似文献   

18.
FtsZ1-1 and MinD plastid division-related genes were identified and cloned from Brassica oleracea var. botrytis. Transgenic tobacco plants expressing BoFtsZ1-1 or BoMinD exhibited cells with either fewer but abnormally large chloroplasts or more but smaller chloroplasts relative to wild-type tobacco plants. An abnormal chloroplast phenotype in guard cells was found in BoMinD transgenic tobacco plants but not in BoFtsZ1-1 transgenic tobacco plants. Transgenic tobacco plants bearing the macro-chloroplast phenotype had 10 to 20-fold increased levels of total FtsZ1-1 or MinD, whilst the transgenic tobacco plants bearing the mini-chloroplast phenotype had lower increased FtsZ1-1 or absence of detectable MinD. We also described for the first time, plastid transformation of macro-chloroplast bearing tobacco shoots with a gene cassette allowing for expression of green fluorescent protein (GFP). Homoplasmic plastid transformants from normal chloroplast and macro-chloroplast tobacco plants expressing GFP were obtained. Both types of transformants accumulated GFP at ~6% of total soluble protein, thus indicating that cells containing macro-chloroplasts can regenerate shoots in tissue culture and can stably integrate and express a foreign gene to similar levels as plant cells containing a normal chloroplast size and number.  相似文献   

19.
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号