首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Pacific salmon are thought to stimulate the productivity of the fresh waters in which they spawn by fertilising them with marine‐derived nutrients (MDN). We compared the influence of salmon spawners on surface streamwater chemistry and benthic biota among three south‐eastern Alaska streams. Within each stream, reaches up‐ and downstream of barriers to salmon migration were sampled during or soon after spawners entered the streams. 2. Within streams, concentrations of dissolved ammonium and soluble reactive phosphorus (SRP), abundance of epilithon (chlorophyll a and ash‐free dry mass) and biomass of chironomids were significantly higher in reaches with salmon spawners. In contrast, biomass of the mayflies Epeorus spp. and Rhithrogena spp. was significantly higher in reaches lacking spawners. 3. Among streams, significant differences were found in concentrations of dissolved ammonium, dissolved organic carbon, nitrate and SRP, abundance of epilithon, and the biomass of chironomids and Rhithrogena. These differences did not appear to reflect differences among streams in spawner density, nor the changes in water chemistry resulting from salmon spawners. 4. Our results suggest that the ‘enrichment’ effect of salmon spawners (e.g. increased streamwater nutrient concentrations) was balanced by other concurrent effects of spawners on streams (e.g. sediment disturbance). Furthermore, the collective effect of spawners on lotic ecosystems is likely to be constrained by conditions unique to individual streams, such as temperature, background water chemistry and light attenuation.  相似文献   

3.
Global climate change is likely to modify the ecological consequences of currently acting stressors, but potentially important interactions between climate warming and land‐use related stressors remain largely unknown. Agriculture affects streams and rivers worldwide, including via nutrient enrichment and increased fine sediment input. We manipulated nutrients (simulating agricultural run‐off) and deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0–6°C above ambient) simultaneously in 128 streamside mesocosms to determine the individual and combined effects of the three stressors on macroinvertebrate community dynamics (community composition and body size structure of benthic, drift and insect emergence assemblages). All three stressors had pervasive individual effects, but in combination often produced additive or antagonistic outcomes. Changes in benthic community composition showed a complex interplay among habitat quality (with or without sediment), resource availability (with or without nutrient enrichment) and the behavioural/physiological tendency to drift or emerge as temperature rose. The presence of sediment and raised temperature both resulted in a community of smaller organisms. Deposited fine sediment strongly increased the propensity to drift. Stressor effects were most prominent in the benthic assemblage, frequently reflected by opposite patterns in individuals quitting the benthos (in terms of their propensity to drift or emerge). Of particular importance is that community measures of stream health routinely used around the world (taxon richness, EPT richness and diversity) all showed complex three‐way interactions, with either a consistently stronger temperature response or a reversal of its direction when one or both agricultural stressors were also in operation. The negative effects of added fine sediment, which were often stronger at raised temperatures, suggest that streams already impacted by high sediment loads may be further degraded under a warming climate. However, the degree to which this will occur may also depend on in‐stream nutrient conditions.  相似文献   

4.
1. The hydraulic and geomorphic characteristics of stream patches are often associated with distinctive assemblages or densities of stream invertebrates, and it is routinely presumed that these patterns reflect primarily species‐specific habitat requirements. An alternative hypothesis is that such patterns may be influenced by constraints on movement, such as the results of departure and settlement processes. We describe a manipulative experiment that examined how the hydraulic environments created by topographic bedforms influenced the drift behaviour and potential settlement sites for two species of mayfly (Baetis rhodani and Ecdyonurus torrentis). These species are common in the drift and often co‐occur in streams, but differ in their small‐scale distribution patterns, body shape and movement behaviour. 2. Flume experiments were carried out to determine how the hydraulic environments conditioned by a step bedform influence the behaviour of mayflies in the drift (swimming, posturing, tumbling), and the consequences of those behaviours (drift distance and time), compared to drift over a plane bed. The ramped step in the flume mimicked step bedforms that are common in coarse‐grained, high‐gradient streams. In contrast to the plane bed, a zone of recirculating flow was created downstream of the step, above which flow was faster and more turbulent. Uniform flows are used in most flume studies of drift; our approach is novel in recreating a complex hydraulic environment characteristic of stream channels. 3. Both species had some behavioural control over drift, and drift distances and times were shorter for live larvae than for dead larvae over the plane bed. The step had no impact on drift time or distance for live Baetis, but dead larvae were trapped in the flow separation eddy and drift time increased accordingly. Some Ecdyonurus also became trapped in the eddy, but live larvae drifted farther than dead larvae, and farther over the step than the plane bed. 4. Whilst in the drift, larvae altered their behaviour according to the ambient hydraulic environment, but in a species‐specific manner. Over the plane bed, Baetis had occasional swimming bursts, but primarily postured (maintained a stable body orientation), whereas Ecdyonurus spent roughly equal time posturing and swimming. In the more turbulent flows generated by the step, Baetis spent proportionately more time swimming, whereas Ecdyonurus spent more time posturing and often tumbling as body orientation became unstable. 5. In a high‐gradient stream, Baetis was more abundant close to steps than in plane bed patches with less complex flow, whereas the opposite pattern held for Ecdyonurus. Thus, the small‐scale distribution patterns of these species within streams correspond to their drift behaviours and ability to access various hydraulic patch types in our flume. These results are consistent with the hypothesis that constraints on movement and settlement may be important driver of distribution patterns within streams.  相似文献   

5.
6.
1. We conducted an experimental study of predation by benthivorous fish on a natural community of stream invertebrates using a reach‐scale approach. Over a 2‐year period (experimental phase), the benthic invertebrate community of a stretch containing two species of benthivorous fish was compared with a fishless stretch. Thereafter, all fish were removed and benthic community structure was analysed again to account for natural differences between the two stretches (reference phase). 2. Benthivorous fish at the moderate densities investigated did not affect total benthic biomass or density, but did alter species composition. In addition, the fish effect differed between pool and riffle habitats, with larger effects in the pools indicating a habitat‐specific predation effect. In the reference phase, when all fish were removed from the stream, the difference between the two stretches was reduced. 3. The benthivorous fish reduced the densities of four taxa (Pisidium sp., Dugesia gonocephala, Gammarus pulex, Limoniidae), representing 29% of total biomass. It is possible that density reductions of other species were masked by prey migration despite the relatively large spatial scale. Indeed, higher drift activity in the upstream fishless stretch could have increased the density of Baetis rhodani in the fish stretch, as indicated by the results of a drift model. 4. Our results provide insights into stream food web ecology because fish predation showed effects even in a natural system where habitat complexity was high, environmental factors were highly variable and many predator and prey species interacted and because benthivorous fish were the focus, whereas the majority of previous predation experiments in streams have used drift‐feeding trout.  相似文献   

7.
1. Pacific salmon (Oncorhynchus spp.) deliver marine‐derived nutrients to the streams in which they spawn and die, and these resource subsidies can increase the abundance of stream biota. In strong contrast, physical disturbance from salmon spawning activity can reduce the abundance of benthic organisms. Previous experimental designs have not established the relative effects of these two contrasting processes on stream organisms during a salmon run. 2. We combined manipulative and observational field studies to assess the degree of nutrient enrichment, physical disturbance, and the net effect of salmon on the abundance of benthic periphyton. Related salmon‐mediated processes were also evaluated for benthic macroinvertebrates. Mesh exclosures (2 × 2 m plots) prevented salmon from disturbing areas of the stream channel, which were compared with areas to which salmon had access. Sampling was conducted both before and during the late‐summer spawning run of pink (O. gorbushca) and chum (O. keta) salmon. 3. Streamwater nitrogen and phosphorus concentrations increased sharply with the onset of the salmon run, and highly significant positive relationships were observed between the numbers of salmon present in the stream and these dissolved nutrients. Before the salmon run, periphyton biomass (as chlorophyll a) and total macroinvertebrate abundance were very similar between control and exclosure plots. During the salmon run, exclosures departed substantially from controls, suggesting significant disturbance imparted on benthic biota. 4. Comparing exclosures before and during the salmon run enabled us to estimate the effects of salmon in the absence of direct salmon disturbance. This ‘nutrient enrichment potential’ was significant for periphyton biomass, as was a related index for macroinvertebrate abundance (although enhanced invertebrate drift into exclosures during the salmon run could also have been important). Interestingly, however, the net effect of salmon, evaluated by comparing control plots before and during the salmon run, was relatively modest for both periphyton and macroinvertebrates, suggesting that nutrient enrichment effects were largely offset by disturbance. 5. Our results illustrate the importance of isolating the specific mechanisms via which organisms affect ecosystems, and indicate that the relative magnitude of salmon nutrient enrichment and benthic disturbance determines the net effect that these ecologically important fish have on stream ecosystems.  相似文献   

8.
Effects of headwater impoundment and channelization on invertebrate drift   总被引:2,自引:2,他引:0  
The construction of a flood control impoundment on Twitty's Creek added large numbers of organisms of limnetic origin to the stream ecosystem. However, the number of limnetic organisms per unit volume of water decreased rapidly as the distance downstream from the reservoir increased and, during most sampling periods, made up an insignificant portion of the total drift biomass at 7.2 km downstream. Factors favoring the extended downstream drift of limnetic organisms were high stream discharge and low water temperature.Several taxa of benthic organisms had much lower drift rates in the station immediately below the dam than at other stations and several taxa commonly taken at other stations were not captured immediately below the reservoir outfall. One possible explanation is that these organisms may have longer drift recruitment distances than the distance from the reservoir outfall to the sample location.A comparison of drift densities of organisms of benthic origin and benthic standing crop densities in channeled and unchanneled streams revealed that drift densities were higher in channeled streams than in unchanneled streams for most taxa of invertebrates. In addition, channeled streams appeared to have lower benthic standing crops than unchanneled streams for most taxa of invertebrates.In stream sections impacted by either channelization or the Twitty Lake outfall, the energy dynamics of the stream ecosystems were altered by increased density of drifting invertebrates. From the standpoint of increasing food availability to the fish fauna of the stream, these changes would appear to benefit drift feeding species and negatively impact bottom feeding species.  相似文献   

9.
10.
1. We investigated the effects of local disturbance history and habitat parameters (abiotic and biotic) on the microdistribution of benthic invertebrates during several floods in two streams, the Schmiedlaine in Germany (four events) and the Kye Burn in New Zealand (two events). 2. Bed movement patterns were quantified using metal‐link scour chains. Before and after each flood, quantitative invertebrate samples were taken from replicate bed patches that had experienced sediment scour, fill or remained stable. 3. Patterns of invertebrate density in the different bed stability types (i.e. scour, fill, stable) varied between floods, sampling dates and streams, but invertebrate density was highest in stable patches in >50% of all the patch type effects detected and lowest in fill patches in 75% of all detected effects. Stable bed patches acted as a refugium for Liponeura spp. and Leuctra spp. in the Schmiedlaine and for Hydracarina and Deleatidium spp. in the Kye Burn. 4. Averaged across both streams, only near‐bed current velocity was correlated with invertebrate distribution on the streambed more often than disturbance history. In the Kye Burn, disturbance history and water depth were the most influential habitat parameters. 5. Our results suggest that a thorough understanding of the microdistribution of benthic invertebrates requires knowledge of disturbance history, as well as more readily measured habitat parameters such as current velocity or water depth.  相似文献   

11.
The 2006 completion of the circum‐island Compact Road on the island of Babeldaob in the Republic of Palau resulted in several deforested stream reaches with modified stream channels. To determine the impacts of deforestation and road construction, various ecosystem parameters were compared between road‐impacted reaches, reforested savanna reaches, and forested reaches. Compared to adjacent forested reaches, road‐impacted reaches received significantly more light (0.4 ± 0.1 vs. 87.8 ± 4.1 % light transmittance, respectively), were significantly warmer (25.7 ± 0.1 vs. 26.1 ± 0.1°C, respectively), and received higher nutrient and sediment loads, all of which were attributed to the removal of riparian vegetation and increased surface runoff from the road. These differences were believed to have shifted the benthic algal community in road‐impacted reaches from diatoms to filamentous algae with significantly greater chl a biomass (10×) and benthic algal ash free dry mass AFDM (3×) compared to adjacent forested reaches. Savanna‐impacted and forested reaches had similar chl a, algal AFDM, and received similar amounts of light. Nutrient and sediment concentrations varied between the two reach types. Results from this study emphasize the need for the maintenance of riparian forests especially with predicted increases in population, development, and deforestation. Future studies are needed to determine effective riparian widths and riparian forest community structure to help resource managers and land owners protect and preserve the many ecosystem services that Palauan streams and watersheds provide.  相似文献   

12.
Macro-invertebrate drift was measured entering and leaving two pools on the Middle Fork of the Cosumnes River, a third order California stream. Drift rates for Baetis spp., Chironomidae, Simulium spp., Capniidae and total drift were calculated. Significant differences in the numbers of organisms entering the two pools were found for Baetis, Chironomidae, and Capniidae. Comparisons of drift rates at the upstream and downstream ends of each pool showed that the abundance of Chironomidae, Simulium, Capniidae and total drift changed in different directions across the pools. The numbers of organisms leaving the two pools, however, were not significantly different for Baetis, Simulium, Capniidae and total drift. These findings lead us to hypothesize that long pools act as barriers, not filters, to stream macro-invertebrate drift. The composition of drift leaving the pools in this experiment appeared to be controlled by the composition of the benthic habitat at the tail of the pool and not by the composition of upstream drift entering the pools.  相似文献   

13.
1. Pacific salmon (Oncorhynchus spp.) returning to streams deliver substantial quantities of nutrients (nitrogen and phosphorus) that may stimulate primary production. Salmon can also affect the phytobenthos negatively via physical disturbance during nest excavation, a process that may counteract the positive effects of salmon‐derived nutrients on benthic algae. The ability of salmon to disturb benthic habitats may be a function of substratum particle size, and therefore, the geomorphology of streams could determine the net effect of salmon on benthic communities. 2. Based on surveys of 17 streams in southwest Alaska before the salmon run and during peak salmon density, we identified size thresholds for the disturbance of substratum particles by salmon and classified particles as vulnerable (<60 mm B‐axis), invulnerable (>110 mm) or transitional (61–110 mm). At the scale of individual rocks, algal biomass on vulnerable substrata decreased at peak spawning (relative to values before the run) as a power function of salmon density; transitional and invulnerable substrata showed no quantifiable pattern. However, invulnerable substrata in streams with more than 0.11 salmon m?2 showed net algal accrual, or relatively smaller declines in algal biomass, than vulnerable substrata, indicating that large rocks provide refuge for benthic algae from salmon disturbance. 3. We expected that streams with proportionally larger rocks would respond positively to salmon at the whole‐stream scale, after accounting for the relative abundance of rocks of different sizes within streams. Invulnerable rocks made up only 0–12% of the total substratum particle size distribution in salmon‐bearing streams, however, and algal accrual on invulnerable substrata did not outweigh the strong disturbance effects on the more spatially extensive vulnerable substrata. The change in whole‐stream benthic algal biomass among streams was negatively related to salmon density. 4. Stable isotopes of nitrogen (δ15N) were used to track nutrients from salmon into benthic biota. Periphyton δ15N on rocks of all size classes was higher at peak salmon spawning than before the salmon run, indicating the uptake of salmon‐derived nitrogen. Peak δ15N values were positively related to salmon abundance and followed a two‐isotope mixing relationship. The per cent of N from salmon in periphyton was also related to salmon density and was best explained by a saturating relationship. Spring δ15N was unrelated to salmon returns in the previous year, suggesting little annual carryover of salmon nutrients.  相似文献   

14.
15.
1. Variation in resource subsidies can create or reinforce heterogeneity in recipient ecosystems. Related activities of organisms delivering resource subsidies, such as ecosystem engineering by Pacific salmon spawners (Oncorhynchus spp.), also alter heterogeneity. We studied whether heterogeneity in stream environmental conditions and spawner abundances were reflected in the net ecological effects of salmon (i.e. enrichment by resource subsidies and disturbance by ecosystem engineering) on benthic biofilm. 2. We sampled seven Southeast Alaska streams over 3 years, both before and during the salmon run. In each stream and year, stream environmental characteristics and their influence on responses of benthic biofilm [mean and coefficient of variation of chlorophyll a (chl a), ash‐free dry mass (AFDM) and autotrophic index (AFDM:chl a)] to spawners were assessed. 3. Streams and periods before and during the salmon run were distinct based on their environmental characteristics. The responses of most biofilm metrics to spawners were stream‐ and year‐specific, suggesting that the ecological effect of spawners ranged from net enrichment to net disturbance depending on the stream or year studied. The environmental context, especially temperature, large wood, and sediment size, explained >50% of biofilm variability during the run, but <30% over the entire study, suggesting that salmon can alter environmental constraints. 4. Precision of biofilm estimates improved by increasing either the number of streams or the number of years sampled (i.e. spatial or temporal replication). However, combining data from different North Pacific Rim ecoregions inflated the confidence interval as compared with a single ecoregion, indicating the importance of regional environmental contexts for net salmon effects. 5. Our results suggest that biofilm responses to salmon can vary greatly, even within a single ecoregion, and that environmental conditions can modify net salmon effects. Consequently, generalisations about biofilm responses across the native range of salmon may be challenging.  相似文献   

16.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

17.
1. Increased fine sediment input caused by agricultural development is expected to act as a stressor for stream ecosystems. In a large‐scale field experiment, we added fine river sand to 50‐m reaches of three second‐order streams in each of four categories of catchment development (ungrazed tussock grasslands, grazed pasture, dairying and deer farming) and measured the responses of macroinvertebrates and aquatic moss. 2. Before addition, fine sediment cover differed between land uses, being lowest in tussock (7%), intermediate in pasture (30%) and dairy (47%) and highest in deer streams (88%). Sediment addition increased cover by one land‐use category (e.g. augmented sediment cover in tussock streams was similar to pre‐existing cover in pasture streams), and cover remained high in impact reaches (compared with controls) throughout the 5‐week experiment. Sediment addition did not change concentrations of phosphate, nitrate and ammonium, which were generally highest in dairy streams and lowest in tussock streams. 3. Aquatic mosses (most common in tussock, absent in dairy and deer), invertebrate density (highest in deer, lowest in tussock), taxon richness (highest in pasture, lowest in deer) and diversity (highest in pasture and tussock, lowest in dairy and deer) all differed between land uses. Sediment addition resulted in reductions of moss cover, invertebrate taxon richness and richness of Ephemeroptera, Plecoptera and Trichoptera in impact relative to control reaches. 4. The impact of sediment addition was strongest in pasture streams where pre‐existing sediment cover was moderate and richness and diversity of the invertebrate community highest. However, even in the already sediment‐rich and species‐poor deer streams, density of one common taxon was reduced significantly by sediment addition, and another two were affected in the same way in dairy streams, the second‐most intense land use. 5. Our experiment has disentangled the impact of sediment addition from other concomitant land‐use effects that could not be reliably distinguished in previous research, which has mainly consisted of correlative studies or unrealistically small‐scale experiments.  相似文献   

18.
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high.  相似文献   

19.
Macroinvertebrate drift in a Rocky Mountain stream   总被引:5,自引:4,他引:1  
J. David Allan 《Hydrobiologia》1987,144(3):261-268
An extensive series of drift collections from a Rocky Mountain stream was used to investigate quantitative patterns in the taxonomic composition of drift throughout spring, summer and fall for 1975–1978. Drift was estimated by drift rate, the number of organisms drifting past a point per 24 h; and by drift density, the numbers of organisms collected per 100 m3 of water sampled.Drift densities were up to ten times greater by night than by day, and 24 h drift densities for the total fauna approached 2000 per 100 m3 in June–July, declining to <500 by autumn. Ephemeroptera, and especially Baetis, dominated the drift. Drift rates were greatest in late spring, around 106 per 24 h, which are among the highest values reported for small trout streams. Drift rates declined to <105 during the summer, and shifts in the taxonomic composition are described.Multiple regression analysis of the relationship between drift rate and density, and the independent variables discharge, benthic density and temperature, showed that discharge typically was a significant predictor of 24 h drift rate, usually the best single predictor. In contrast, 24 h drift density most frequently was independent of discharge, indicating that this measure tends to correct for seasonal variation in discharge, as suggested in the literature. However, this was not invariably true. Drift density significantly correlated with benthic density in five of eight taxa inspected, thus seasonal declines in the benthos probably accounted for parallel declines in drift density.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号