首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida albicans has the ability to adapt to different host niches, often glucose-limited but rich in alternative carbon sources. In these glucose-poor microenvironments, this pathogen expresses JEN1 and JEN2 genes, encoding carboxylate transporters, which are important in the early stages of infection. This work investigated how host microenvironments, in particular acidic containing lactic acid, affect C. albicans biofilm formation and antifungal drug resistance. Multiple components of the extracellular matrix were also analysed, including their impact on antifungal drug resistance, and the involvement of both Jen1 and Jen2 in this process. The results show that growth on lactate affects biofilm formation, morphology and susceptibility to fluconazole and that both Jen1 and Jen2 might play a role in these processes. These results support the view that the adaptation of Candida cells to the carbon source present in the host niches affects their pathogenicity.  相似文献   

2.
3.
Candida albicans is an opportunistic fungal pathogen that colonises the skin as well as genital and intestinal mucosa of most healthy individuals. The ability of Calbicans to switch between different morphological states, for example, from an ellipsoid yeast form to a highly polarised, hyphal form, contributes to its success as a pathogen. In highly polarised tip‐growing cells such as neurons, pollen tubes, and filamentous fungi, delivery of membrane and cargo to the filament apex is achieved by long‐range delivery of secretory vesicles tethered to motors moving along cytoskeletal cables that extend towards the growing tip. To investigate whether such a mechanism is also critical for Calbicans filamentous growth, we studied the dynamics and organisation of the Calbicans secretory pathway using live cell imaging and three‐dimensional electron microscopy. We demonstrate that the secretory pathway is organised in distinct domains, including endoplasmic reticulum membrane sheets that extend along the length of the hyphal filament, a sub‐apical zone exhibiting distinct membrane structures and dynamics and a Spitzenkörper comprised of uniformly sized secretory vesicles. Our results indicate that the organisation of the secretory pathway in Calbicans likely facilitates short‐range “on‐site” secretory vesicle delivery, in contrast to filamentous fungi and many highly polarised cells.  相似文献   

4.
5.
Candida albicans is an opportunistic fungal pathogen of humans. The ability of the fungus to grow as both yeast and filamentous forms is essential for its pathogenicity. Morphogenesis of C. albicans is largely regulated through the secondary messenger cAMP, produced by the soluble adenylyl cyclase, Cyr1p. Recent evidence suggests that Cyr1p can be directly stimulated by environmental cues to increase cytoplasmic cAMP levels and thus promote hyphal development. In this issue of Molecular Microbiology, Zou et al. demonstrate that, in response to some environmental cues, Cyr1p functions as part of a tripartite complex additionally involving Cap1p and G‐actin. All three proteins in the complex are required to raise cytosolic cAMP levels after stimulation with serum and bacterial peptidoglycan. The formation of such a complex highlights the importance of precise regulation of Cyr1p activity in response to host environmental cues.  相似文献   

6.
7.
Short‐chain carboxylic acids generated by various mixed‐ or pure‐culture fermentation processes have been considered valuable precursors for production of bioalcohols. While conversion of carboxylic acids into alcohols is routinely performed with catalytic hydrogenation or with strong chemical reducing agents, here, a biological conversion route was explored. The potential of carboxydotrophic bacteria, such as Clostridium ljungdahlii and Clostridium ragsdalei, as biocatalysts for conversion of short‐chain carboxylic acids into alcohols, using syngas as a source of electrons and energy is demonstrated. Acetic acid, propionic acid, n‐butyric acid, isobutyric acid, n‐valeric acid, and n‐caproic acid were converted into their corresponding alcohols. Furthermore, biomass yields and fermentation stoichiometry from the experimental data were modeled to determine how much metabolic energy C. ljungdahlii generated during syngas fermentation. An ATP yield of 0.4–0.5 mol of ATP per mol CO consumed was calculated in the presence of hydrogen. The ratio of protons pumped across the cell membrane versus electrons transferred from ferredoxin to NAD+ via the Rnf complex is suggested to be 1.0. Based on these results, we provide suggestions how n‐butyric acid to n‐butanol conversion via syngas fermentation can be further improved. Biotechnol. Bioeng. 2013; 110: 1066–1077. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Structural studies on the cerebroside isolated from the yeast form of a dimorphic pathogen, Candida albicans were carried out using fast atom bombardment mass spectrometry (FAB/MS), proton magnetic resonance spectrometry, gas chromatography-mass spectrometry and usual chemical methods. The component sugar was only glucose attached to ceramide in a beta-configuration. The major fatty acid was 2-hydroxystearic acid (62%). The predominant long chain base was identified as 9-methyl-C18-sphinga-4,8-dienine which is widely distributed in fungi and reported to be essential to the fruit-inducing activity of fungi. Therefore, the structure of the main molecular species of the cerebroside was determined to be N-2-hydroxystearoyl-1-O-beta-glucosyl-9-methyl-C18-sphinga-4 ,8-dienine. Cerebroside prepared from the mycelial form of C. albicans has the same structure.  相似文献   

10.
Enzymatic synthesis is the preferred way to produce so‐called “natural products.” Hydrolases have been used for short‐chain ester synthesis. These esters present a pleasant flavor and they have a lot of applications in different industries. Novozym 435 from Candida antarctica (EC 3.1.1.3, triacylglycerol lipase) was used for hexyl ester synthesis in n‐hexane and supercritical carbon dioxide (SCCO2). Direct esterification provided higher yields than transesterification for the synthesis of esters. Several carboxylic acids of different chain lengths were tested for the esterification reactions: acetic, propionic, butyric, caproic and caprylic acids. The reactions were carried out at 40°C and the amount of enzyme used was 13.8 g/mol alcohol. Substrates were added at equimolar concentrations, with sufficient stirring to avoid external diffusion control. Different substrate concentrations up to 1.5 M were used. The working pressure was 14 MPa in the case of SCCO2 and atmospheric pressure in the case of organic solvent. The results in both solvents show that the reaction rate increases with the chain length of the acid, but the final yields were similar. However, some of the reactions prove to be faster in SCCO2, except for hexyl acetate and propionate synthesis, in which acetic and propionic acid presented a lower solubility in SCCO2 due to its high polarity. Moreover, an acetic acid concentration of 1.5 M brought about a strong inhibition of the enzyme activity.  相似文献   

11.
Tyrosine phosphorylation regulates multiple cell signaling pathways and functionally modulates a number of ion channels and receptors. Neurotransmitter transporters, which act to clear transmitter from the synaptic cleft, are regulated by multiple second messenger pathways that exert their effects, at least in part, by causing a redistribution of the transporter protein to or from the cell surface. To test the hypothesis that tyrosine phosphorylation affects transporter function and to determine its mechanism of action, we examined the regulation of the rat brain gamma-aminobutyric acid (GABA) transporter GAT1 expressed endogenously in hippocampal neurons and expressed heterologously in Chinese hamster ovary cells. Inhibitors of tyrosine kinases decreased GABA uptake; inhibitors of tyrosine phosphatases increased GABA uptake. The decrease in uptake seen with tyrosine kinase inhibitors was correlated with a decrease in tyrosine phosphorylation of GAT1 and resulted in a redistribution of the transporter from the cell surface to intracellular locations. A mutant GAT1 construct that was refractory to tyrosine phosphorylation could not be regulated by tyrosine kinase inhibitors. Activators of protein kinase C, which are known to cause a redistribution of GAT1 from the cell surface, were additive to the effects of tyrosine kinase inhibitors suggesting that multiple signaling pathways control transporter redistribution. Application of brain-derived neurotrophic factor, which activates receptor tyrosine kinases, up-regulated GAT1 function suggesting one potential trigger for the cellular regulation of GAT1 signaling by tyrosine phosphorylation. These data support the hypothesis that transporter expression and function is controlled by the interplay of multiple cell signaling cascades.  相似文献   

12.
Regulation of gene expression has been studied extensively in Saccharomyces cerevisiae and Schizosaccharomyces pombe . Some, but by far not all, of the findings are also applicable to Candida albicans , an important ascomycete fungal pathogen of humans. Areas of research in C. albicans include the influence of key signal transduction cascades on morphology, and the response to host-generated influences, such as host immune effector cells, blood, pH or elevated carbon dioxide. The resistance to antifungal agents and response to stress are also well researched. Conditional gene expression and reporter genes adapted to the codon usage of C. albicans are now widely used in C. albicans . Here we present a comprehensive overview of the current techniques used to investigate regulation mechanisms for promoters in C. albicans and other Candida species. In addition, we discuss reporter genes used for the study of gene expression.  相似文献   

13.
Short‐chain fatty acids (SCFAs), predominantly acetic, propionic, and butyric acids, are bacterial metabolites with an important role in the maintenance of homeostasis due to their metabolic and immunomodulatory actions. Some evidence suggests that they may also be relevant during infections. Therefore, we aimed to investigate the effects of SCFAs in the effector functions of neutrophils to an opportunistic pathogenic bacterium, Aggregatibacter actinomycetemcomitans. Using a subcutaneous model to generate a mono, isolated infection of Aactinomycetemcomitans, we demonstrated that the presence of the SCFAs in situ did not affect leukocyte accumulation but altered the effector mechanisms of migrating neutrophils by downregulating the production of cytokines, their phagocytic capacity, and killing the bacteria, thus impairing the containment of Aactinomycetemcomitans. Similar effects were observed with bacteria‐stimulated neutrophils incubated with SCFAs in vitro. These effects were independent of free‐fatty acid receptor 2 (FFAR2) activation, the main SCFA receptor expressed on neutrophils, occurring possibly through inhibition of histone deacetylases because similar effects were obtained by using histone deacetylase inhibitors, such as SAHA, MS‐275, and RGFP 966. Considering the findings of this study, we hypothesized that in an infectious condition, SCFAs may exert a detrimental effect on the host by inhibiting neutrophil's effector functions.  相似文献   

14.
The small Rho G-protein Rac1 is highly conserved from fungi to humans, with approximately 65% overall sequence identity in Candida albicans. As observed with human Rac1, we show that C. albicans Rac1 can accumulate in the nucleus, and fluorescence recovery after photobleaching (FRAP) together with fluorescence loss in photobleaching (FLIP) studies indicate that this Rho G-protein undergoes nucleo-cytoplasmic shuttling. Analyses of different chimeras revealed that nuclear accumulation of C. albicans Rac1 requires the NLS-motifs at its carboxyl-terminus, which are blocked by prenylation of the adjacent cysteine residue. Furthermore, we show that C. albicans Rac1 dynamics, both at the plasma membrane and in the nucleus, are dependent on its activation state and in particular that the inactive form accumulates faster in the nucleus. Heterologous expression of human Rac1 in C. albicans also results in nuclear accumulation, yet accumulation is more rapid than that of C. albicans Rac1. Taken together our results indicate that Rac1 nuclear accumulation is an inherent property of this G-protein and suggest that the requirements for its nucleo-cytoplasmic shuttling are conserved from fungi to humans.  相似文献   

15.
[目的]白念珠菌CaFTH1是一种铁通透酶编码基因.为了研究CaFTH1对胞内铁代谢和液泡功能的影响,构建fth1△/△单基因缺失菌株和fth1△/△fet33△/△双基因缺失菌株.[方法]利用生物信息学软件对CaFTH1进行序列比对和分析;通过实时荧光定量PCR技术研究铁离子丰度对CaFTH1表达的影响;利用PCR介导的同源重组方法构建基因缺失菌株;利用原子吸收光谱方法测定基因缺失菌株胞内铁含量的变化,并对基因缺失菌株在缺铁条件和菌丝诱导条件下的生长状况进行研究;通过代谢转换实验,研究CaFTH1对细胞液泡功能的影响.[结果]序列比对结果表明白念珠菌CaFth1蛋白属于铁通透酶Ftr1超家族,与酿酒酵母液泡膜蛋白ScFth1具有最高的同源性.铁匮乏条件会诱导CaFTH1的表达,而富铁条件则会抑制其表达.白念珠菌CaFTH1的缺失会导致胞内铁含量的降低,fth1△/△突变菌株基础上CaFET33的缺失则会进一步降低胞内铁含量.在缺铁条件下,fth1△/△fet33△/△双基因缺失菌株在一定程度上表现出代谢转换能力的缺陷.另外,在某些固体菌丝诱导培养条件下,fth1△/△fet33△/△缺失菌株菌落表面形成褶皱能力显著增强;而在液体菌丝诱导条件下,则表现为增强的菌丝聚集能力.[结论]CaFTH1是一种低铁应答基因,在维持白念珠菌胞内铁离子稳态及液泡功能方面具有重要作用.CaFTH1和CaFET33基因的双缺失会对白念珠菌的菌落形态和菌丝聚集产生影响.  相似文献   

16.
17.
18.
19.
20.
CDC37基因编码的产物是一个参与蛋白激酶折叠成熟的分子伴侣蛋白,存在于多种真核生物中。在利用酵母双杂交系统筛选白念珠菌蛋白激酶Crk1相互作用蛋白时,获得一个CDC37同源基因。该基因编码区全长1524bp,编码一含508个氨基酸的蛋白质。其氨基酸序列与酿酒酵母Cdc37蛋白的序列同源性达41%。该基因在酿酒酵母中的表达能回复cdc37-1突变株的温度敏感表型,表明它能互补ScCDC37的功能。该基因命名为CaCDC37。Northern杂交显示,该基因在白念珠菌中呈组成型表达,转录水平不受形态转变和生长条件的影响;在crk1缺失株和CRK1高表达菌株中或者在cph1efg1双缺失株中,CaCDC37基因的转录水平没有明显变化。利用酵母双杂交系统分析CaCdc37与另外两个预测的白念珠菌分子伴侣蛋白CaSti1和CaHsp90的相互作用,结果表明CaCdc37能与CaSti1相互作用,而与CaHsp90的相互作用未能检测到。根据这些结果推测了CaCdc37可能的作用机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号