首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The lowland peatlands of south‐east Asia represent an immense reservoir of fossil carbon and are reportedly responsible for 30% of the global carbon dioxide (CO2) emissions from Land Use, Land Use Change and Forestry. This paper provides a review and meta‐analysis of available literature on greenhouse gas fluxes from tropical peat soils in south‐east Asia. As in other parts of the world, water level is the main control on greenhouse gas fluxes from south‐east Asian peat soils. Based on subsidence data we calculate emissions of at least 900 g CO2 m?2 a?1 (~250 g C m?2 a?1) for each 10 cm of additional drainage depth. This is a conservative estimate as the role of oxidation in subsidence and the increased bulk density of the uppermost drained peat layers are yet insufficiently quantified. The majority of published CO2 flux measurements from south‐east Asian peat soils concerns undifferentiated respiration at floor level, providing inadequate insight on the peat carbon balance. In contrast to previous assumptions, regular peat oxidation after drainage might contribute more to the regional long‐term annual CO2 emissions than peat fires. Methane fluxes are negligible at low water levels and amount to up to 3 mg CH4 m?2 h?1 at high water levels, which is low compared with emissions from boreal and temperate peatlands. The latter emissions may be exceeded by fluxes from rice paddies on tropical peat soil, however. N2O fluxes are erratic with extremely high values upon application of fertilizer to wet peat soils. Current data on CO2 and CH4 fluxes indicate that peatland rewetting in south‐east Asia will lead to substantial reductions of net greenhouse gas emissions. There is, however, an urgent need for further quantitative research on carbon exchange to support the development of consistent policies for climate change mitigation.  相似文献   

3.
Primary forest conversion is a worldwide serious problem associated with human disturbance and climate change. Land use change from primary forest to plantation, grassland or agricultural land may lead to profound alteration in the emission of soil greenhouse gases (GHG). Here, we conducted a global meta‐analysis concerning the effects of primary forest conversion on soil GHG emissions and explored the potential mechanisms from 101 studies. Our results showed that conversion of primary forest significantly decreased soil CO2 efflux and increased soil CH4 efflux, but had no effect on soil N2O efflux. However, the effect of primary forest conversion on soil GHG emissions was not consistent across different types of land use change. For example, soil CO2 efflux did not respond to the conversion from primary forest to grassland. Soil N2O efflux showed a prominent increase within the initial stage after conversion of primary forest and then decreased over time while the responses of soil CO2 and CH4 effluxes were consistently negative or positive across different elapsed time intervals. Moreover, either within or across all types of primary forest conversion, the response of soil CO2 efflux was mainly moderated by changes in soil microbial biomass carbon and root biomass while the responses of soil N2O and CH4 effluxes were related to the changes in soil nitrate and soil aeration‐related factors (soil water content and bulk density), respectively. Collectively, our findings highlight the significant effects of primary forest conversion on soil GHG emissions, enhance our knowledge on the potential mechanisms driving these effects and improve future models of soil GHG emissions after land use change from primary forest.  相似文献   

4.
We model the carbon balance of European croplands between 1901 and 2000 in response to land use and management changes. The process‐based ORCHIDEE‐STICS model is applied here in a spatially explicit framework. We reconstructed land cover changes, together with an idealized history of agro‐technology. These management parameters include the treatment of straw and stubble residues, application of mineral fertilizers, improvement of cultivar species and tillage. The model is integrated for wheat and maize during the period 1901–2000 forced by climate each 1/2‐hour, and by atmospheric CO2, land cover change and agro‐technology each year. Several tests are performed to identify the most sensitive agro‐technological parameters that control the net biome productivity (NBP) in the 1990s, with NBP equaling for croplands the soil C balance. The current NBP is a small sink of 0.16 t C ha?1 yr?1. The value of NBP per unit area reflects past and current management, and to a minor extent the shrinking areas of arable land consecutive to abandonment during the 20th Century. The uncertainty associated with NBP is large, with a 1‐sigma error of 0.18 t C ha?1 yr?1 obtained from a qualitative, but comprehensive budget of various error terms. The NBP uncertainty is dominated by unknown historical agro‐technology changes (47%) and model structure (27%), with error in climate forcing playing a minor role. A major improvement to the framework would consist in using a larger number of representative crops. The uncertainty of historical land‐use change derived from three different reconstructions, has a surprisingly small effect on NBP (0.01 t C ha?1 yr?1) because cropland area remained stable during the past 20 years in all the tested land use forcing datasets. Regional cross‐validation of modeled NBP against soil C inventory measurements shows that our results are consistent with observations, within the uncertainties of both inventories and model. Our estimation of cropland NBP is however likely to be biased towards a sink, given that inventory data from different regions consistently indicate a small source whereas we model a small sink.  相似文献   

5.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

6.
《植物生态学报》2016,40(10):1049
Aims It is important to study the effects of land use change and reduced precipitation on greenhouse gas fluxes (CO2, CH4 and N2O) of forest soils. Methods The fluxes of CO2, CH4 and N2O and their responses to environmental factors of primary forest soil, secondary forest soil and artificial forest soil under a reduced precipitation regime were explored using the static chamber and gas chromatography methods during the period from January to December in 2014. Important findings Results indicate that CH4 uptake of primary forest soil ((-44.43 ± 8.73) μg C·m-2·h-1) was significantly higher than that of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) and the artificial forest soil ((-10.52 ± 2.11) μg C·m-2·h-1). CH4 uptake of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) was significantly higher than that of the artificial forest ((-10.52 ± 2.11) μg C·m-2·h-1). CO2 emissions of the artificial forest soil ((106.53 ± 19.33) μg C·m-2·h-1) were significantly higher than that of the primary forest soil ((49.50 ± 8.16) μg C·m-2·h-1) and the secondary forest soil ((63.50 ± 5.35) μg C·m-2·h-1) (p < 0.01). N2O emissions of the secondary forest soil ((1.91 ± 1.22) μg N·m-2·h-1) were higher than that of the primary forest soil ((1.40 ± 0.28) μg N·m-2·h-1) and the artificial forest soil ((1.01 ± 0.86) μg N·m-2·h-1). Reduced precipitation (-50%) had a significant inhibitory effect on CH4 uptake of the artificial forest soil, while it enhanced CO2 emissions of the primary forest soil and the secondary forest soil. Reduced precipitation had a significant inhibitory effect on CO2 emissions of the artificial forest soil and N2O emissions of the secondary forest (p < 0.01). Reduced precipitation promotes N2O emissions of the primary forest soil and the artificial forest soil. CH4 uptake of the primary forest and the secondary forest soil increased significantly with the increase of soil temperature under natural and reduced precipitation. CO2 and N2O emission fluxes of the primary forest soil, secondary forest soil and artificial forest soil were positively correlated with soil temperature (p < 0.05). Soil moisture inhibited CH4 uptake of the secondary forest soil and the artificial forest soil (p < 0.05). CO2 emissions of the primary forest soil were significantly positively correlated with soil moisture (p < 0.05). N2O emissions of primary forest soil and secondary forest soil were significantly correlated with the nitrate nitrogen content (p < 0.05). It was implied that reduced precipitation and land use change would have significant effects on greenhouse gas emissions of subtropical forest soils.  相似文献   

7.
弄清土地利用和降水变化对林地土壤主要温室气体(CO2、CH4和N2O)排放通量变化的影响, 是准确评估森林土壤温室气体排放能力的重要基础。该研究以常绿落叶阔叶混交林原始林、桦木(Betula luminifera)次生林和马尾松(Pinus massoniana)人工林为对象, 采用静态箱-气相色谱法研究了3种土地利用方式(常绿落叶阔叶混交林原始林、桦木次生林和马尾松人工林)和降水减少处理状况下森林土壤CO2、CH4和N2O通量排放特征, 并探讨了其环境驱动机制。研究结果表明: 原始林土壤CH4吸收通量显著高于次生林和人工林, 次生林CH4吸收通量显著高于人工林土壤。人工林土壤CO2排放通量显著高于原始林和次生林土壤。次生林土壤N2O排放通量高于原始林和人工林, 但三者间差异不显著。降水减半显著抑制了3种不同土地利用方式下林地土壤CH4吸收通量; 降水减半处理对原始林和次生林土壤CO2排放通量均具有显著的促进作用, 而对人工林土壤CO2排放通量具有显著的抑制作用; 降水减半处理促进了原始林和人工林林地土壤N2O排放而抑制了次生林林地土壤N2O排放。原始林和次生林林地土壤CH4吸收通量随土壤温度升高显著增加, CH4吸收通量与土壤温度均呈显著相关关系; 原始林、次生林和人工林土壤CO2和N2O排放通量与土壤温度均呈显著正相关关系; 土壤湿度抑制了次生林和人工林土壤CH4吸收通量, 其CH4吸收通量随土壤湿度增加显著减少; 原始林土壤CO2排放通量与土壤湿度呈显著正相关关系。自然状态下, 原始林土壤N2O排放通量与土壤湿度呈显著正相关关系, 原始林和次生林土壤N2O排放通量与硝态氮含量呈显著相关关系。研究结果表明全球气候变化(如降水变化)和土地利用方式的转变将对北亚热带森林林地土壤温室气体排放通量产生显著的影响。  相似文献   

8.
The Global Carbon Project (GCP) has published global carbon budgets annually since 2007 (Canadell et al. [2007], Proc Natl Acad Sci USA, 104, 18866–18870; Raupach et al. [2007], Proc Natl Acad Sci USA, 104, 10288–10293). There are many scientists involved, but the terrestrial fluxes that appear in the budgets are not well understood by ecologists and biogeochemists outside of that community. The purpose of this paper is to make the terrestrial fluxes of carbon in those budgets more accessible to a broader community. The GCP budget is composed of annual perturbations from pre‐industrial conditions, driven by addition of carbon to the system from combustion of fossil fuels and by transfers of carbon from land to the atmosphere as a result of land use. The budget includes a term for each of the major fluxes of carbon (fossil fuels, oceans, land) as well as the rate of carbon accumulation in the atmosphere. Land is represented by two terms: one resulting from direct anthropogenic effects (Land Use, Land‐Use Change, and Forestry or land management) and one resulting from indirect anthropogenic (e.g., CO2, climate change) and natural effects. Each of these two net terrestrial fluxes of carbon, in turn, is composed of opposing gross emissions and removals (e.g., deforestation and forest regrowth). Although the GCP budgets have focused on the two net terrestrial fluxes, they have paid little attention to the gross components, which are important for a number of reasons, including understanding the potential for land management to remove CO2 from the atmosphere and understanding the processes responsible for the sink for carbon on land. In contrast to the net fluxes of carbon, which are constrained by the global carbon budget, the gross fluxes are largely unconstrained, suggesting that there is more uncertainty than commonly believed about how terrestrial carbon emissions will respond to future fossil fuel emissions and a changing climate.  相似文献   

9.
As society faces the urgent need to mitigate climate change, it is critical to understand how various ecosystems contribute to the climate, and to express these contributions in terms that are meaningful to policymakers, economists, land managers, and other nonscience interest holders. Efforts to mitigate climate change call for quantification of the full greenhouse gas (GHG) effects of land use decisions, yet we lack an appropriate metric of the full GHG implications of maintaining a given ecosystem over a multiple year time frame. Here, we propose the concept of greenhouse gas value (GHGV) of ecosystems, which accounts for potential GHG release upon clearing of stored organic matter, annual GHG flux, and probable GHG exchanges resulting from disturbance. It treats these ecosystem–atmosphere exchanges in a time‐sensitive manner, thereby providing an appropriate framework for computing of the GHG consequences of any land use decision. To illustrate this concept, we provide estimates of the GHGV of various biome types (based on data compiled from the literature), disturbance regimes, and decisions on the treatment of time. We show that natural ecosystems generally have high GHGV's, whereas managed ecosystems generally have lower or negative GHGV's; that GHGV decreases with increasing probability of disturbance, and that decisions on the treatment of time can be important, affecting some ecosystem types more strongly than others. In addition, we show how GHGV may be used to quantify the full GHG effects of land‐use or land‐cover change in a thorough and rigorous manner. Finally, we provide comparisons of GHGV to other major paradigms for valuing the GHG contributions of ecosystems, showing that – for many purposes –GHGV is the most appropriate method of quantifying the GHG services of ecosystems.  相似文献   

10.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

11.
A significant portion of the production and consumption of trace gases (e.g. CO2, CH4, N2O, NH3, etc.) by world ecosystems occurs in areas without sufficient infrastructure or easily available grid power to run traditional closed‐path flux stations. Open‐path analyzer design allows such measurements with power consumption 10–150 times below present closed‐path technologies, helping to considerably expand the global coverage and improve the estimates of gas emissions and budgets, informing the remote sensing and modeling communities and policy decisions, all the way to IPCC reports. Broad‐band nondispersive infrared devices have been used for open‐path CO2 and H2O measurements since the late 1970s, but since recently, a growing number of new narrow‐band laser‐based instruments are being rapidly developed. The new design comes with its own challenges, specifically: (a) mirror contamination, and (b) uncontrolled air temperature, pressure and humidity, affecting both the gas density and the laser spectroscopy of the measurements. While the contamination can be addressed via automated cleaning, and density effects can be addressed via the Webb‐Pearman‐Leuning approach, the spectroscopic effects of the in situ temperature, pressure and humidity fluctuations on laser‐measured densities remain a standing methodological question. Here we propose a concept accounting for such effects in the same manner as Webb et al. proposed to account for respective density effects. Derivations are provided for a general case of flux of any gas, examined using a specific example of CH4 fluxes from a commercially available analyzer, and then tested using “zero‐flux” experiment. The proposed approach helps reduce errors in open‐path, enclosed, and temperature‐ or pressure‐uncontrolled closed‐path laser‐based flux measurements due to the spectroscopic effects from few percents to multiple folds, leading to methodological advancement and geographical expansion of the use of such systems providing reliable and consistent results for process‐level studies, remote sensing and Earth modeling applications, and GHG policy decision‐making.  相似文献   

12.
Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large‐scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m?2 d?1), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4 + CO2), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2‐equivalents. The incorporation of ebullition and plant‐mediated CH4 fluxes would further increase the importance of lake CH4. The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning.  相似文献   

13.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

14.
Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land‐based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground‐level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground‐level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land‐based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research.  相似文献   

15.
S. Saarnio  J. Silvola 《Oecologia》1999,119(3):349-356
Increases in the supply of atmospheric CO2 and N are expected to alter the carbon cycle, including CH4 emissions, in boreal peatlands. These effects were studied in a glasshouse experiment with peat monoliths cored from an oligotrophic pine fen. The cores with living plants were kept in 720 ppmv and 360 ppmv CO2 atmospheres for about 6 months under imitated natural temperature cycle. Fertilisation with NH4NO3 (3 g m−2 for 25 weeks) was applied to 18 of the 36 monoliths. The rate of CH4 flux was non-linearly dependent on the number of Eriophorum vaginatum shoots growing in the monoliths, probably due to the gas transport properties of the aerenchyma. The average CH4 efflux rate, standardised by the number of shoots, was increased by a maximum of 10–20% in response to the raised CO2 level. In the raised-NH4NO3 treatment, the increase in CH4 release was lower. The effect of combined CO2+NH4NO3 on CH4 release was negligible and even lower than in the single treatments. Both potential CH4 production and oxidation rates at 5, 15 and 25°C were higher near the surface than at the bottom of the core. As expected, the rates clearly depended on the incubation temperature, but the different treatments did not cause any consistent differences in either CH4 production or oxidation. The determination of potential CH4 production and oxidation in the laboratory is evidently too crude a method of differentiating substrate-induced differences in CH4 production and oxidation in vivo. These results indicate that an increase in atmospheric CO2 or N supply alone, at least in the short term, slightly enhances CH4 effluxes from boreal peatlands; but together their effect may even be restrictive. Received: 18 June 1998 / Accepted: 25 January 1999  相似文献   

16.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

17.
Uncertainty in soil carbon (C) fluxes across different land‐use transitions is an issue that needs to be addressed for the further deployment of perennial bioenergy crops. A large‐scale short‐rotation coppice (SRC) site with poplar (Populus) and willow (Salix) was established to examine the land‐use transitions of arable and pasture to bioenergy. Soil C pools, output fluxes of soil CO2, CH4, dissolved organic carbon (DOC) and volatile organic compounds, as well as input fluxes from litter fall and from roots, were measured over a 4‐year period, along with environmental parameters. Three approaches were used to estimate changes in the soil C. The largest C pool in the soil was the soil organic carbon (SOC) pool and increased after four years of SRC from 10.9 to 13.9 kg C m?2. The belowground woody biomass (coarse roots) represented the second largest C pool, followed by the fine roots (Fr). The annual leaf fall represented the largest C input to the soil, followed by weeds and Fr. After the first harvest, we observed a very large C input into the soil from high Fr mortality. The weed inputs decreased as trees grew older and bigger. Soil respiration averaged 568.9 g C m?2 yr?1. Leaching of DOC increased over the three years from 7.9 to 14.5 g C m?2. The pool‐based approach indicated an increase of 3360 g C m?2 in the SOC pool over the 4‐year period, which was high when compared with the ?27 g C m?2 estimated by the flux‐based approach and the ?956 g C m?2 of the combined eddy‐covariance + biometric approach. High uncertainties were associated to the pool‐based approach. Our results suggest using the C flux approach for the assessment of the short‐/medium‐term SOC balance at our site, while SOC pool changes can only be used for long‐term C balance assessments.  相似文献   

18.
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.  相似文献   

19.
Subsoils contain large amounts of organic carbon which is generally believed to be highly stable when compared with surface soils. We investigated subsurface organic carbon storage and dynamics by analysing organic carbon concentrations, fractions and isotopic values in 78 samples from 12 sites under different land‐uses and climates in eastern Australia. Despite radiocarbon ages of several millennia in subsoils, contrasting native systems with agriculturally managed systems revealed that subsurface organic carbon is reactive on decadal timeframes to land‐use change, which leads to large losses of young carbon down the entire soil profile. Our results indicate that organic carbon storage in soils is input driven down the whole profile, challenging the concept of subsoils as a repository of stable organic carbon.  相似文献   

20.
Boreal peatlands in Canada have harbored relict permafrost since the Little Ice Age due to the strong insulating properties of peat. Ongoing climate change has triggered widespread degradation of localized permafrost in peatlands across continental Canada. Here, we explore the influence of differing permafrost regimes (bogs with no surface permafrost, localized permafrost features with surface permafrost, and internal lawns representing areas of permafrost degradation) on rates of peat accumulation at the southernmost limit of permafrost in continental Canada. Net organic matter accumulation generally was greater in unfrozen bogs and internal lawns than in the permafrost landforms, suggesting that surface permafrost inhibits peat accumulation and that degradation of surface permafrost stimulates net carbon storage in peatlands. To determine whether differences in substrate quality across permafrost regimes control trace gas emissions to the atmosphere, we used a reciprocal transplant study to experimentally evaluate environmental versus substrate controls on carbon emissions from bog, internal lawn, and permafrost peat. Emissions of CO2 were highest from peat incubated in the localized permafrost feature, suggesting that slow organic matter accumulation rates are due, at least in part, to rapid decomposition in surface permafrost peat. Emissions of CH4 were greatest from peat incubated in the internal lawn, regardless of peat type. Localized permafrost features in peatlands represent relict surface permafrost in disequilibrium with the current climate of boreal North America, and therefore are extremely sensitive to ongoing and future climate change. Our results suggest that the loss of surface permafrost in peatlands increases net carbon storage as peat, though in terms of radiative forcing, increased CH4 emissions to the atmosphere will partially or even completely offset this enhanced peatland carbon sink for at least 70 years following permafrost degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号