首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We use approximately 1900bp of mitochondrial (ND2) and nuclear (c-mos and Rag-1) DNA sequence data to recover phylogenetic relationships among 58 species and 26 genera of Eugongylus group scincid lizards from New Caledonia, Lord Howe Island, New Zealand, Australia and New Guinea. Taxon sampling for New Caledonian forms was nearly complete. We find that the endemic skink genera occurring on New Caledonia, New Zealand and Lord Howe Island, which make up the Gondwanan continental block Tasmantis, form a monophyletic group. Within this group New Zealand and New Zealand+Lord Howe Island form monophyletic clades. These clades are nested within the radiation of skinks in New Caledonia. All of the New Caledonian genera are monophyletic, except Lioscincus. The Australian and New Guinean species form a largely unresolved polytomy with the Tasmantis clade. New Caledonian representatives of the more widespread genera Emoia and Cryptoblepharus are more closely related to the non-Tasmantis taxa than to the endemic New Caledonian genera. Using ND2 sequences and the calibration estimated for the agamid Laudakia, we estimate that the diversification of the Tasmantis lineage began at least 12.7 million years ago. However, using combined ND2 and c-mos data and the calibration estimated for pygopod lizards suggests the lineage is 35.4-40.74 million years old. Our results support the hypothesis that skinks colonized Tasmantis by over-water dispersal initially to New Caledonia, then to Lord Howe Island, and finally to New Zealand.  相似文献   

2.
We used a multi-gene approach to assess the phylogenetic relationships of New Zealand diplodactylid geckos to their Australian and New Caledonian relatives and to one another. Data from nuclear (RAG-1, PDC) and mitochondrial (ND2, 16S) genes from >180 specimens representing all 19 recognized New Zealand taxa and all but two of 20 putatively new species suggested by previous studies were analyzed using Maximum Parsimony, Maximum Likelihood and Bayesian inference. All analyses retrieved a monophyletic New Zealand clade, most closely related to the Australian Diplodactylidae exclusive of Pseudothecadactylus. Hoplodactylus is paraphyletic and composed of two morphological groups: a broad-toed clade, consisting of the island-restricted, largest extant species, Hoplodactylus duvaucelii, and the species-rich, wide-ranging Hoplodactylus maculatus clade; and a narrow-toed clade, comprising five monophyletic subgroups: Naultinus, the Hoplodactylus pacificus and Hoplodactylus granulatus clades, and the distinctive species Hoplodactylus rakiurae and Hoplodactylus stephensi. Each of these lineages is here recognized at the generic level. Our data support recognition of 16 new species (36 total), and five new or resurrected genera (seven total). The New Zealand diplodactylid radiation split from its Australian relatives 40.2mya (95% highest posterior density estimate 28.9-53.5), after the opening of the Tasman Sea. Their distribution cannot, therefore, be regarded as derived as a result of Gondwanana vicariance. The age of the New Zealand crown group, 24.4mya (95% highest posterior density estimate 15.5-33.8), encompasses the period of the 'Oligocene drowning' of New Zealand and is consistent with the hypothesis that New Zealand was not completely inundated during this period. Major lineages within New Zealand geckos diverged chiefly during the mid- to late Miocene, probably in association with a suite of geological and climatological factors that have characterized the region's complex history.  相似文献   

3.
The phylogeny of a representative group of genera and species from the Sapotaceae tribe Chrysophylleae, mainly from Australia and New Caledonia, was studied by jackknife analyses of sequences of nuclear ribosomal DNA. The phylogeny conflicts with current opinions on generic delimitation in Sapotaceae. Pouteria and Niemeyera, as presently circumscribed, are both shown to be nonmonophyletic. In contrast, all species currently assigned to these and other segregate genera confined to Australia, New Caledonia, or neighboring islands, form a supported clade. Earlier classifications in which more genera are recognized may better reflect relationships among New Caledonian taxa. Hence, there is need for a revision of generic boundaries in Chrysophylleae, and particularly within the Pouteria complex, including Leptostylis, Niemeyera, Pichonia, Pouteria pro parte (the main part of section Oligotheca), and Pycnandra. Section Oligotheca have been recognized as the separate genus Planchonella, a monophyletic group that needs to be resurrected. Three clades with strong support in our jackknife analysis have one Australian species that is sister to a relatively large group of New Caledonian endemics, suggesting multiple dispersal events between this small and isolated tropical island and Australia. The phylogeny also suggests an interesting case of a relatively recent and rapid radiation of several lineages of Sapotaceae within New Caledonia.  相似文献   

4.
Summary

Vicariance and dispersion both must be considered as possibilities for the fauna and flora of New Zealand and New Caledonia. Oligocene submersion, promoted by the geologists and several biologists, does not seem to have been total. Refuge stations must have existed in mountains and even in plains in some surrounding areas. From there the relicts must have radiated after the partial submersion. Certain “primitive” Chrysomelidae Eumolpinae (Bohumiljania spp.) are closely related to Patagonian genera. Their case is not unique among the terrestrial organisms of New Caledonia. How to explain the occurrence of Amborella in New Caledonia and of the tuataras in New Zealand, already very probably extinct elsewhere during the Paleogene?  相似文献   

5.
New Zealand taxa from the Orthopteran family Anostostomatidae have been shown to consist of three broad groups, Hemiandrus (ground weta), Anisoura/Motuweta (tusked weta) and Hemideina-Deinacrida (tree-giant weta). The family is also present in Australia and New Caledonia, the nearest large land masses to New Zealand. All genera are endemic to their respective countries except Hemiandrus that occurs in New Zealand and Australia. We used nuclear and mitochondrial DNA sequence data to study within genera and among species-level genetic diversity within New Zealand and to examine phylogenetic relationships of taxa in Australasia. We found the Anostostomatidae to be monophyletic within Ensifera, and justifiably distinguished from the Stenopelmatidae among which they were formerly placed. However, the New Zealand Anostostomatidae are not monophyletic with respect to Australian and New Caledonian species in our analyses. Two of the New Zealand groups have closer allies in Australia and one in New Caledonia. We carried out maximum-likelihood and Bayesian analyses to reveal several well supported subgroupings. Our analysis included the most extensive sampling to date of Hemiandrus species and indicate that Australian and New Zealand Hemiandrus are not monophyletic. We used molecular dating approaches to test the plausibility of alternative biogeographic hypotheses for the origin of the New Zealand anostostomatid fauna and found support for divergence of the main clades at, or shortly after, Gondwanan break-up, and dispersal across the Tasman much more recently.  相似文献   

6.
Helicopsyche trispina sp. n. is described from Grande Terre, New Caledonia, based on pharate males, larvae and pupae. The species appears to belong to the monophyletic New Caledonian Helicopsyche clade.  相似文献   

7.
Aim To test whether environmental diversification played a role in the diversification of the New Caledonian Hydropsychinae caddisflies. Location New Caledonia, south‐west Pacific. Methods The phylogeny of the New Caledonian Hydropsychinae caddisflies was hypothesized using parsimony and Bayesian methods on molecular characters. The Bayesian analysis was the basis for a comparative analysis of the correlation between phylogeny and three environmental factors: geological substrate (ultrabasic, non‐ultrabasic), elevation and precipitation. Phylogenetic divergence times were estimated using a relaxed clock method, and environmental factors were mapped onto a lineage‐through‐time plot to investigate the timing of environmental diversification in relation to species radiation. The correlation between rainfall and elevation was tested using independent contrasts, and the gamma statistic was calculated to infer the diversification pattern of the group. Results The diversification of extant Orthopsyche–Caledopsyche species began in the Middle–Late Oligocene, when much of the island of New Caledonia was covered by ultrabasic substrate and mountain forming was prevalent. Most lineages originated in the Middle–Late Miocene, a period associated with long‐term climate oscillation. Optimization of environmental factors on the phylogeny demonstrated that the New Caledonian Hydropsychinae group adapted to ultrabasic substrate early in its evolutionary history. The clade living mostly on ultrabasic substrate was far more species‐rich than the clade living mostly on non‐ultrabasic substrate. Elevation and rainfall were significantly correlated with each other. The lineage‐through‐time plot revealed that the main environmental diversification preceded species diversification. A constant speciation through time was rejected, and the negative gamma indicates that most of the diversification occurred early in the history of the clade. According to the inferred phylogeny, the genus Orthopsyche McFarlane is a synonym under Caledopsyche Kimmins, and Abacaria caledona Oláh & Barnard should also be included in Caledopsyche. Main conclusions The age of the radiation does not support a vicariance origin of New Caledonian Hydropsychinae caddisflies. Environmental diversification pre‐dates lineage diversification, and thus environmental heterogeneity potentially played a role in the diversification of the group, by providing a variety of fragmented habitats to disperse into, promoting speciation. The negative gamma indicates that the speciation rate slowed as niches started to fill.  相似文献   

8.
Abstract  Pseudofoenus caledonicus sp. nov. is described from New Caledonia, and is the second member of the Hyptiogastrinae recorded from these islands. This discovery points to a more diverse fauna of Hyptiogastrinae in the south-west Pacific, which also includes P. ritae (Cheesman), from New Caledonia and Vanuatu, P. extraneus (Turner) from Fiji, and a number of species from New Guinea and New Zealand. Although a revised phylogenetic analysis does not resolve the relationships of P. caledonicus , neither the two New Caledonian species nor the south-west Pacific fauna in general are likely to be monophyletic. This fauna is discussed in terms of its relationships with Pseudofoenus spp. from mainland Australia, and possible mechanisms that have given rise to the current distribution of species.  相似文献   

9.
Aim Determine the geographical and temporal origins of New Zealand cicadas. Location New Zealand, eastern Australia and New Caledonia. Methods DNA sequences from 14 species of cicadas from New Zealand, Australia, and New Caledonia were examined. A total of 4628 bp were analysed from whole genome extraction of four mitochondrial genes (cytochrome oxidase subunits I and II, and ribosomal 12S and 16S subunits) and one nuclear gene (elongation factor‐1 alpha). These DNA sequences were aligned and analysed using standard phylogenetic methods based primarily on the maximum likelihood optimality criterion. Dates of divergences between clades were determined using several molecular clock methods. Results New Zealand cicadas form two well‐defined clades. One clade groups with Australian taxa, the other with New Caledonian taxa. The molecular clock analyses indicate that New Zealand genera diverged from the Australian and New Caledonian genera within the last 11.6 Myr. Main conclusions New Zealand was likely colonized by two or more invasions. One NZ lineage has its closest relatives in Australia and the other in New Caledonia. These invasions occurred well after New Zealand became isolated from other land masses, therefore cicadas must have crossed large bodies of water to reach New Zealand.  相似文献   

10.
We investigated the origin of Hawaiian Pittosporum and their relationship to other South Pacific Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximum-likelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.  相似文献   

11.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   

12.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

13.
Phylogeny of the centipede order Scutigeromorpha has received recent attention from combined analyses of molecular and morphological data. Denser generic sampling, an additional marker (12S rRNA), and multiple specimens for selected species are used to explore phylogeny, biogeography and taxonomy of this charismatic group of centipedes. Among 55 specimens/27 species analysed for six genes are the first molecular data for the genera Dendrothereua , Pilbarascutigera , and Tachythereua , and previously unsampled species of Scutigerinae from Madagascar. Sampling density is especially increased for Thereuoneminae from Australia and New Caledonia. At the base of Scutigeromorpha, the split of Pselliodidae from Scutigerinidae + Scutigeridae is favoured by the optimal parameter set in combined analyses, but most suboptimal parameter sets instead unite pselliodids and scutigerinids. Dendrothereua is re-established for a Neotropical clade that variably resolves as sister to Tachythereua or separate from Scutigerinae, grouped with Pselliodidae and Scutigerinidae. As traditionally diagnosed, the genera that comprise most of Australian and New Caledonian diversity, Allothereua and Parascutigera , are mutually polyphyletic, though they unite as a well supported clade, sister to or including the Western Australian Pilbarascutigera . The main biogeographical signal within the Allothereua / Parascutigera clade is Western Australia as sister area to eastern Australia/New Caledonia, within which New Caledonian " Parascutigera " has a single origin under optimal parameter sets. Genetic variation within scutigeromorph species is appraised using samples of Scutigera coleoptrata throughout its native distribution plus presumed synanthropic records, and from the Allothereua/Parascutigera clade. Variation between six alleged narrow-range endemic species of Parascutigera in north Queensland is consistent with a single species.  相似文献   

14.
A phylogenetic analysis of genera within the informal suballiance Beaufortia (family Myrtaceae), largely endemic to Australia and New Caledonia, is presented based on separate and combined data sets for 5S and ITS-1 spacer regions of nuclear ribosomal DNA. The two sets were not in conflict but the 5S data set was more informative. Data were analysed using conventional parsimony, jackknife parsimony, and three-item parsimony analyses. Three-item analysis gave more resolved trees than conventional parsimony analysis. The Beaufortia suballiance includes two major clades, with all Australian representatives of Callistemon (shown to be monophyletic) and most Australian representatives of Melaleuca forming one of these. The sister clade comprises a well-defined group of endemic New Caledonian taxa (classified as Callistemon and Melaleuca ), some Australian species of Melaleuca , a clade including the Western Australia/Northern Territory genera Beaufortia, Lamarchea , and Regelia , and a clade including the south-west Western Australian genera Calothamnus, Eremaea, Conothamnus , and Phymatocarpus . All molecular analyses sup port the monophyly of Conothamnus and of Regelia , genera for which a number of species were included. Three-item analysis of the combined data set supports the monophyly of Beaufortia . The findings have implications for both taxonomy and biogeography.  相似文献   

15.
Aim To investigate distributional patterns and derivation of skates in the Australasian realm. Location Australasia. Methods Genus‐group skate taxa were defined for this region for the first time and new systematic information, as well as bathymetric and geographical data, used to identify distribution patterns. Results The extant skate fauna of Australasia (Australia, New Zealand, New Caledonia and adjacent subAntarctic dependencies) is highly diverse and endemic with sixty‐two species from twelve currently recognized, nominal genus‐group taxa. These include the hardnose skate (rajin) groups Anacanthobatis, Amblyraja, Dipturus, Okamejei, Rajella and Leucoraja, and softnose skate (arhynchobatin) genera Arhynchobatis, Bathyraja, Insentiraja, Irolita, Pavoraja and Notoraja. Additional new and currently unrecognized nominal taxa of both specific and supraspecific ranks also occur in the region. The subfamily Arhynchobatinae is particularly speciose in Australasia, and the New Zealand/New Caledonian fauna is dominated by undescribed supraspecific taxa and species. The Australian fauna, although well represented by arhynchobatins, is dominated by Dipturus‐like skates and shows little overlap in species composition with the fauna of New Zealand and New Caledonia. Similarly, these faunas exhibit no overlap with the polar faunas of the Australian subAntarctic dependencies (Heard and Macdonald Islands) to the south. Skates appear to be absent from the Macquarie Ridge at the southern margin of the New Zealand Plateau. Their absence off New Guinea probably reflects inadequate sampling and the subsequent poor knowledge of that region's deepwater fish fauna. Main conclusions Skates appear to have existed in the eastern, Australasian sector of Gondwana before fragmentation in the late Cretaceous. The extant fauna appears to be derived from elements of Gondwanan origin, dispersal from the eastern and western Tethys Sea, and intraregional vicariance speciation.  相似文献   

16.
Aim The distribution of Onychophora across the southern continents has long been considered the result of vicariance events. However, it has recently been hypothesized that New Zealand was completely inundated during the late Oligocene (25–22 Ma) and therefore that the entire biota is the result of long-distance dispersal. We tested this assumption using phylogenetic and molecular dating of DNA sequence data from Onychophora. Location New Zealand, Australia, South Africa, Chile (South America). Methods We obtained DNA sequence data from the nuclear genes 28S and 18S rRNA to reconstruct relationships among species of Peripatopsidae (Onychophora). We performed molecular dating under a Bayesian relaxed clock model with a range of prior distributions using the rifting of South America and South Africa as a calibration. Results Our phylogenetic trees revealed that the New Zealand genera Ooperipatellus and Peripatoides, together with selected Australian genera (Euperipatoides, Phallocephale and an undescribed genus from Tasmania), form a monophyletic group that is the sister group to genera from Chile (Metaperipatus) and South Africa (Peripatopsis and Opisthopatus). The relaxed clock dating analyses yielded mean divergence times from 71.3 to 78.9 Ma for the split of the New Zealand Peripatoides from their Australian sister taxa. The 0.95 Bayesian posterior intervals were very broad and ranged from 24.5 to 137.6 Ma depending on the prior assumptions. The mean divergence of the New Zealand species of Ooperipatellus from the Australian species Ooperipatellus insignis was estimated at between 39.9 and 46.2 Ma, with posterior intervals ranging from 9.5 to 91.6 Ma. Main conclusions The age of Peripatoides is consistent with long-term survival in New Zealand and implies that New Zealand was not completely submerged during the Oligocene. Ooperipatellus is less informative on the question of continuous land in the New Zealand region because we cannot exclude a post-Oligocene divergence. The great age of Peripatoides is consistent with a vicariant origin of this genus resulting from the rifting of New Zealand from the eastern margin of Gondwana and supports the assumptions of previous authors who considered the Onychophora to be a relict component of the New Zealand biota.  相似文献   

17.
18.
The phylogeny of the temperate Gondwanan harvestman family Pettalidae is investigated by means of a new morphological matrix of 45 characters, and DNA sequence data from five markers, including two nuclear ribosomal genes (18S rRNA and 28S rRNA), one nuclear protein coding gene (histone H3), and two mitochondrial genes–one protein coding (cytochrome c oxidase subunit I) and one ribosomal (16S rRNA). Phylogenetic analyses using an array of homology schemes (dynamic and static), criteria (parsimony and maximum likelihood), and sampling strategies (optimal trees versus Bayesian phylogenetics) all agree on the monophyly of Pettalidae as well as several of its subclades, each of which is restricted to a modern landmass. While most genera as traditionally defined are monophyletic, Rakaia and Neopurcellia, distributed across Queensland (Australia) and New Zealand, are not. Instead, the species from Queensland, previously described under three genera, constitute a well‐supported clade, suggesting that in this case biogeography prevails over traditional taxonomy. A taxonomic emendation of the genera from Queensland and New Zealand is presented, and the new genus Aoraki is erected to include the species of the New Zealand denticulata group. A biogeographical hypothesis of the relationships of the former temperate Gondwana landmasses (with the exception of Madagascar) is presented, although ambiguity in the deep nodes of the pettalid tree renders such inference provisional. The data suggest that neither the South African fauna, the New Zealand fauna nor the Australian fauna is monophyletic but instead monophyly is found at smaller geographic scales (e.g., Western Australia, Queensland, NE South Africa). © The Willi Hennig Society 2007.  相似文献   

19.
The hybrid stick insect genus Acanthoxyla Uvarov 1944 is unusual for an obligate parthenogen, in the extreme morphological diversity it exhibits that has led to eight species being recognised. The New Zealand sexual species Clitarchus hookeri [White, A. 1846. The zoology of the Voyage of H.M.S. Erebus and Terror. In: 1 Insects of New Zealand. E.W. Janson, London.] is the putative parental species in the hybridization that gave rise to the hybrid lineage Acanthoxyla. In an effort to identify the maternal ancestor of Acanthoxyla we sequenced nuclear 28S rDNA and/or mtDNA COI & COII of all nine endemic New Zealand stick insect genera, representing 17 of the 22 described species. We also sequenced 28S from eight non-New Zealand stick insects to supplement published 28S sequence data that provided a taxonomically and geographically broad sampling of the phasmids. We applied a novel search algorithm (SeqSSi=Sequence Similarity Sieve) to assist in selection of outgroup taxa for phylogenetic analysis prior to alignment. Phylogenetic reconstructions resolved an exclusively New Zealand clade to which the maternal lineage of Acanthoxyla belonged, but did not support existing higher level taxonomy of stick insects. We did not find a sexual maternal species for Acanthoxyla but phylogenetic relationships indicate that this species lived in New Zealand and could be classified among the New Zealand Phasmatinae. Among the available taxa, the nearest evolutionary neighbours to the New Zealand phasmid fauna as a whole were predominantly from the New Zealand region (Fiji, Australia, New Guinea, New Caledonia and South America). As it appears to be an orphan, it is interesting to speculate that a combination of parthenogenetic reproduction and/or hybrid vigour in Acanthoxyla may have contributed to the extinction of its mother.  相似文献   

20.
Recent molecular studies have provided estimates of phylogeny for nearly all living and recently extinct species in the Order Dasyuromorphia, the dominant clade of insectivorous‐carnivorous marsupials in Australasia. We review these studies along with morphology‐based ones, and present an analysis of all cytochrome b, 12S rRNA, and protamine Pl gene sequences available. In light of these results, we provide a revised suprageneric classification and assess the implications of molecular and paleontological data for dasyurid cladogenesis. Molecular results divide extant dasyurids (Dasyuridae) into four major clades apart from the numbat (Myrmecobiidae) and thylacines (Thylacinidae). We recognize these clades as tribes Dasyurini (Dasyurus, Phascolosorex, and allied genera) and Phascogalini (Antechinus, Murexia, Phascogale) in the Subfamily Dasyurinae, and tribes Sminthopsini (Sminthopsis, Ningaui, Antechinomys) and Planigalini (Planigale) in the Subfamily Sminthopsinae. Each tribe shows a basal radiation of lineages corresponding to genera or species groups. Our results concur with the most recent previous synthesis of dasyurid phylogeny in many respects, but subsumption of New Guinean ‘phascolosoricines’ and ‘muricines’ within Dasyurini and Phascogalini, respectively, constitute significant differences. In particular, the sister‐pairing of ‘phascolosoricines’ with a Dasyurus‐Sarcophilus clade implied by molecular data is difficult to reconcile with anatomy. Divergence rates of mitochondrial sequences are calibrated approximately by comparing thylacine‐to‐dasyurid distances with the age of the oldest thylacinid (Badjcinus, latest Oligocene). Estimated cladogenic dates suggest that extant subfamilies shared a common ancestor around 24 Mya and that major radiations began late in the mid‐Miocene, consistent with the results of previous paleontological studies. The late‐middle and late Miocene corresponds to an episode of faunal turnover in Australian marsupials (including the decline of thylacinid and bandicoot genera, as well as the rise of dasyurids) and to a time when uplift of the New Guinean highlands accelerated the transition from rainforest to drier habitats. Our findings are consistent with the hypothesis that continent‐wide climate changes modulated macroevolution across these independent marsupial clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号