首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In promoter DNA, the preferred distance of the ?10 and ?35 elements for interacting with RNA polymerase‐bound σ70 is 17 bp. However, the Devi et al. paper in this issue of Molecular Microbiology demonstrates that when the C‐terminal domain of σ70, including the 3.2 linker, is not attached to the core enzyme, distances between 0 and 3 bp can be accommodated. This attests to the great flexibility of the 3.2 linker. The particularly stable complex with the 2 bp separation may lend itself to structural studies of an early elongation complex containing σ70.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Escherichia coli uses σ factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single σ factor, approximately 5% of them have dual σ factor preference. The most common are those responsive to both σ70, which controls housekeeping genes, and σ38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that ‘σ70+38 genes’ are nearly as upregulated in stationary growth as ‘σ38 genes’. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to σ38 and σ70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.  相似文献   

10.
11.
12.
13.
14.
15.
clpC ofBacillus subtilis is part of an operon containing six genes. Northern blot analysis suggested that all genes are co-transcribed and encode stress-inducible proteins. Two promoters (PA and PB) were mapped upstream of the first gene. PA resembles promoters recognized by the vegetative RNA polymerase EσA. The other promoter (PB) was shown to be dependent on σB, the general stress σ factor in B. subtilis, suggesting that clpC, a potential chaperone, is expressed in a σB-dependent manner. This is the first evidence that σB in B, subtilis is involved in controlling the expression of a gene whose counterpart, clpB, is subject to regulation by σ32 in Escherichia coli, indicating a new function of σB-dependent general stress proteins. PB deviated from the consensus sequence of σB promoters and was only slightly induced by starvation conditions. Nevertheless, strong induction by heat, ethanol, and salt stress occurred at the σB-dependent promoter, whereas the vegetative promoter was only weakly induced under these conditions. However, in a sigB mutant, the σA-like promoter became inducible by heat and ethanol stress, completely compensating for sigB deficiency. Only the downstream σA-like promoter was induced by certain stress conditions such as hydrogen peroxide or puromycin. These results suggest that novel stress-induction mechanisms are acting at a vegetative promoter. Involvement of additional elements in this mode of induction are discussed.  相似文献   

16.
17.
18.
19.
20.
The conserved omega (ω) subunit of RNA polymerase (RNAP) is the only nonessential subunit of bacterial RNAP core. The small ω subunit (7 kDa–11.5 kDa) contains three conserved α helices, and helices α2 and α3 contain five fully conserved amino acids of ω. Four conserved amino acids stabilize the correct folding of the ω subunit and one is located in the vicinity of the β′ subunit of RNAP. Otherwise ω shows high variation between bacterial taxa, and although the main interaction partner of ω is always β′, many interactions are taxon‐specific. ω‐less strains show pleiotropic phenotypes, and based on in vivo and in vitro results, a few roles for the ω subunits have been described. Interactions of the ω subunit with the β′ subunit are important for the RNAP core assembly and integrity. In addition, the ω subunit plays a role in promoter selection, as ω‐less RNAP cores recruit fewer primary σ factors and more alternative σ factors than intact RNAP cores in many species. Furthermore, the promoter selection of an ω‐less RNAP holoenzyme bearing the primary σ factor seems to differ from that of an intact RNAP holoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号