首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have used systematic fluorescence resonance energy transfer and distance-constrained docking to define the three-dimensional structures of bacterial RNA polymerase holoenzyme and the bacterial RNA polymerase-promoter open complex in solution. The structures provide a framework for understanding sigma(70)-(RNA polymerase core), sigma(70)-DNA, and sigma(70)-RNA interactions. The positions of sigma(70) regions 1.2, 2, 3, and 4 are similar in holoenzyme and open complex. In contrast, the position of sigma(70) region 1.1 differs dramatically in holoenzyme and open complex. In holoenzyme, region 1.1 is located within the active-center cleft, apparently serving as a "molecular mimic" of DNA, but, in open complex, region 1.1 is located outside the active center cleft. The approach described here should be applicable to the analysis of other nanometer-scale complexes.  相似文献   

3.
4.
5.
6.
7.
We analyzed the composition and abundance of two forms of RNA polymerase II (pol II) holoenzyme in synchronized HeLa cells. We did not detect significant changes in pol II holoenzyme composition, but we noticed differences in the abundance of the two complexes at different stages of the cell cycle. Summarized data from several independent experiments demonstrate that pol II holoenzyme, which is purified by GST-TFIIS affinity chromatography, is more abundant during G1/S and S phases. Another form of pol II holoenzyme, which is purified by anti-CDK7 antibodies, shows relatively higher amounts in G2/M and early G1 phases.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号