首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity thresholds were measured in nine anholocyclic clones of the peach‐potato aphid Myzus persicae collected along a latitudinal cline of its European distribution from Sweden to Spain. The effects of collection origin and intra‐ and intergenerational acclimation on these thresholds were investigated. Low‐temperature (10°C) acclimation for one generation depressed the movement threshold and chill coma temperatures, with the largest reduction in movement threshold recorded for clone UK 1 (8.8–2.5°C) and in chill coma for UK 2 (4.8–2.0°C). High‐temperature (25°C) acclimation for one generation increased the heat movement threshold and heat coma temperature with the largest increase in the movement threshold (40.1–41.1°C) and heat coma (41.4–42.3°C) recorded for clone Swed 1. There was no further intergenerational acclimation over three generations. High‐temperature activity thresholds were less plastic than low‐temperature thresholds, and, consequently, thermal activity ranges were expanded following low‐temperature acclimation. No constant affect of acclimation was observed on chill coma recovery, although clonal differences were observed with Swed 1 and 3 requiring some of the longest complete recovery times. There was no relationship between latitude and activity thresholds with the exception of heat coma data where Scandinavian clones Swed 2 and 3 consistently displayed some of the lowest heat coma temperatures (e.g. 41.3°C for both clones at 20°C) and Mediterranean clones Span 1, 2 and 3 displayed some of the highest (e.g. 42.1, 41.9 and 42.5°C, respectively, at 20°C). These data suggest that clonal mixing could occur over a large scale across Europe, limiting local adaptation to areas where conditions enable long‐term persistence of populations, e.g. adaptation to higher temperatures in the Mediterranean region. It is suggested that aphid thermal tolerance could be governed more by clonal type than the latitudinal origin.  相似文献   

2.
The lower and upper thermal activity thresholds of adult and larval Balaustium hernandezi von Heyden (Acari: Erythraeidae) are compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae). Adult female B. hernandezi retain ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (5.9 and ?2.1 °C, respectively) than those of larval B. hernandezi (8.1 and ?1.7 °C) and T. urticae (10.6 and 10.3 °C). There is no significant difference between the temperature at which adult and larval B. hernandezi and T. urticae cease walking as the temperature is raised (CTmax) (46.7, 46.3 and 47.3 °C, respectively). However, both life stages of B. hernandezi cease movement (heat coma) below the upper locomotory limits of T. urticae (46.8, 46.7 and 48.7 °C, respectively). Adult B. hernandezi have significantly faster walking speeds than larvae and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that B. hernandezi would make an effective biological control agent in temperate climates; however, the extent of the low temperature tolerances of the species suggests the potential to establish in a northern European climate.  相似文献   

3.
Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae) is a parasitic wasp which plays an important role in the biological control of a number of aphid species. Through assessment of its thermal biology and low temperature tolerance, this study ascertains the establishment potential of L. testaceipes in cool temperate climates typical of northern Europe. The developmental threshold of L. testaceipes was 5.8°C. Rearing of parasitoids at shorter day lengths and lower temperatures indicated no ability to enter a diapause state. The supercooling points (SCP) of non-acclimated and acclimated parasitoid life stages were between −24.6°C and −17.7°C, with LTemp50 temperatures approaching these values, indicating a high level of cold tolerance in short exposures. At 5°C the LTime50 of acclimated larvae within parasitized aphids was 42.8 days. Acclimated pupae continued to develop with 54% adult emergence from mummies within 60 days. Acclimated parasitoid larvae and pupae, within living and mummified aphids, continued to develop during 70 days of winter field exposure and emerging adult parasitoids were reproductively viable under field conditions. These data indicate that where suitable host species are available throughout the year, L. testaceipes would be able to establish in northern Europe.  相似文献   

4.
This study investigates the thermal activity thresholds of the predatory mirid Nesidiocoris tenuis Reuter (Hemiptera: Miridae) and two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Adult N. tenuis lost locomotory function and entered chill coma at significantly lower temperatures (4.0°C and 0.3°C, respectively) than adult T. urticae (7.0°C and 5.7°C, respectively). However, the mirids were more adversely affected by high temperatures, with T. urticae losing the ability to walk and entering heat coma at higher temperatures (47.3°C and 49.7°C, respectively) than N. tenuis (43.5°C and 46.6°C, respectively). Across a range of temperatures (2.5–20°C) adult N. tenuis had faster walking speeds than T. urticae. These data are discussed in relation to the climatic conditions under which N. tenuis would be an effective biocontrol agent.  相似文献   

5.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   

6.
The influence of aphid size on the host quality assessment and progeny performance of aphidiine parasitoids was examined using the mealy plum aphid parasitoid, Aphidius transcaspicus Telenga (Hymenoptera: Braconidae) and the black bean aphid, Aphis fabae Scopoli (Homoptera: Aphididae), as a readily acceptable alternate host. Aphid size in relation to stage of development was manipulated by rearing synchronous aphid cohorts at either 15 or 30 °C. At 15 °C, 2nd instar aphids were approximately the same size as 4th instar aphids reared at 30 °C. Cohorts of 30 aphids from each instar, reared at each temperature, were exposed to parasitism by a single parasitoid female for a period of 5 h. Overall susceptibility to parasitism did not vary between aphid cohorts, but the parasitoid response to aphid size differed significantly between rearing temperatures for both progeny sex ratio (parent female assessment of host quality) and larval growth and development (host suitability for parasitoid development). For aphids reared at 15 °C, the proportion of female progeny and emerging adult size for the parasitoid increased linearly with aphid size at the time of attack, while development time remained constant. In contrast, for aphids reared at 30 °C, the proportion of female progeny, emerging adult size, and the development time of the parasitoid all declined with aphid size at the time of attack. The contrasting responses of the parasitoid to host size for aphids reared at the two temperatures suggest that host quality is only indirectly related to aphid size among aphidiine parasitoids. The possible effects of higher temperatures on nutritional stress, obligate endosymbionts, and future growth potential of the aphids are discussed as explanations for the variation in host quality for parasitoid development.  相似文献   

7.
Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae) has constituted a well-studied parasitoid insect model, but very little is known about the host-instar suitability of aphid for the wasp so far. One of the hosts of L. testaceipes is Aphis gossypii Glover (Hemiptera: Aphididae). The latter is a serious aphid pest to vegetable production in Benin. Therefore, the objectives of our study were to: (1) examine the oviposition behavior of L. testaceipes on A. gossypii; (2) investigate the host-instar suitability of A. gossypii for L. testaceipes; and (3) compare the life table parameters of A. gossypii with aphids parasitized by L. testaceipes and unparasitized aphids (control). The study was conducted in a laboratory at 26 ± 1 °C in petri dishes and revealed that the parasitoid utilized up to seven stabbing stings to handle and oviposit, particularly in older A. gossypii. In aphids parasitized at the third instar, the net reproductive rate R o as well as the intrinsic rate of natural increase r m was significantly lower (2.119 ± 0.272 and 0.110 ± 0.018) compared to the control (15.529 ± 1.287 and 0.272 ± 0.008), respectively (p < 0.01).  相似文献   

8.
The aphidophagous ladybird beetle, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), is a dominant predator in various crop systems. Its life history was studied when fed on three aphid prey, viz. Aphis gossypii Glover, Aphis fabae Scopoli and Macrosiphum rosae (L.), under laboratory conditions, 25 ± 1 °C, 65 ± 5 % RH and a photoperiod of 16L:8D. The immature development period was shortest (15.2 days) when A. gossypii was used as prey and longest (18.9 days) on A. fabae. Adult coccinellids had the shortest longevity on A. fabae (64.8 days). The higher and lower mean daily fecundity was recorded for A. fabae (12.4 eggs) and M. rosae (6.2 eggs), respectively. The highest (291.0 eggs) and lowest (183.2 eggs) net reproduction rates (R 0) were observed on A. fabae and M. rosae, respectively. Mean generation time (T) on rose aphid was significantly longer (33.4 days) than on the two other preys. The intrinsic rate of increase (r m) was affected by the R 0 value, and it was highest on A. fabae (0.183) and lowest on M. rosae (0.156). Based on r m as an index of suitability of prey species, A. fabae was the most suitable prey for H. variegata. Our finding may provide basic information for developing aphid biological control programs.  相似文献   

9.
Although the impact of warming on winter limitation of aphid populations is reasonably well understood, the impacts of hot summers and heat wave events are less clear. In this study, we address this question through a detailed analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a widespread, polyphagous temperate zone pest, Myzus polaris, an arctic aphid potentially threatened by climate warming, and, Myzus ornatus, a glasshouse pest that may benefit from warming. The upper lethal limits (ULT50) and heat coma temperatures of the aphid species reared at both 15 and 20 °C did not differ significantly, suggesting that heat coma is a reliable indicator of fatal heat stress. Heat coma and CTmax were also measured after aphids were reared at 10 and 25 °C for one and three generations. The extent of the acclimation response was not influenced by the number of generations. Acclimation increased CTmax with rearing temperature for all species. The acclimation temperature also influenced heat coma; this relationship was linear for M. ornatus and M. polaris but non-linear for M. persicae (increased tolerance at 10 and 25 °C). Bacteria known generically as secondary symbionts can promote thermal tolerance of aphids, but they were not detected in the aphids studied here. Assays of optimum development temperature were also performed for each species. All data indicate that M. persicae has the greatest tolerance of high temperatures.  相似文献   

10.
11.
The lower and upper thermal activity thresholds of the predatory mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) were compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae) and one of the alternative commercially available control agents for T. urticae, Phytoseiulus persimilis Athias-Henriot. Adult female P. macropilis retained ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (8.2 and 0.4 °C, respectively) than that of P. persimilis (11.1 and 3.3 °C) and T. urticae (10.6 and 10.3 °C). As the temperature was raised, P. macropilis ceased walking (CTmax) and entered heat coma (42.7 and 43.6 °C), beyond the upper locomotory limits of P. persimilis (40.0 and 41.1 °C), but before T. urticae (47.3 and 48.7 °C). Walking speeds were investigated and P. persimilis was found to have significantly faster ambulation than P. macropilis and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that P. macropilis will make an effective biological control agent in temperate climates.  相似文献   

12.
Under stressful thermal environments, insects adjust their behavior and physiology to maintain key life‐history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. When exposed for 2 h to a static temperature, lower lethal temperatures ranged from ?9 to 6 °C, ?14 to ?2 °C, and ?1 to 4 °C while upper lethal temperatures ranged from 37 to 48 °C, 41 to 49 °C, and 36 to 39 °C for C. partellus eggs, larvae, and C. sesamiae adults, respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean supercooling points (SCPs) for C. partellus larvae, pupae, and adults were ?11.82 ± 1.78, ?10.43 ± 1.73 and ?15.75 ± 2.47, respectively. Heat knock‐down time (HKDT) and chill‐coma recovery time (CCRT) varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the latter recovered significantly faster following chill‐coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host–parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect–natural enemy interactions under rapidly changing thermal environments.  相似文献   

13.
Abstract A technique for rapidly measuring non‐lethal thermal tolerance traits in small insects and terrestrial arthropods of similar size is described. Single or multiple individuals are heated or cooled in an arena milled into a temperature‐controlled aluminium block and their behaviour recorded continuously using a digital video camera. Data are collected retrospectively by playback of the stored images. To illustrate this technique measurement of six thermal tolerance traits using this method is described using first instar nymphs (body length = 0.66 mm) of the aphid Myzus persicae. These traits are high and low temperatures at which individual aphids cease walking, high and low temperatures at which aphids move for the final time, the temperature at which aphids begin to recover from chill coma, and the temperature at which they begin to walk again. The method is validated by comparing the results of multiple low temperature assays. No significant differences are detected between assays. Potential applications, limitations and technical problems are discussed.  相似文献   

14.
Photoperiodic response curves were determined for two clones of the black bean aphid, Aphis fabae Scopoli, at three temperatures, 12.5, 15 and 17.5°C. Critical night lengths for the induction of winged females in an English clone (52° N) were 10.5, 11 and 11.5 h, respectively, and 10, 10.5 and 11 h in a Scottish clone (57° N). Critical night lengths for male induction were 10.5, 11 and 11 h at 12.5, 15 and 17.5°C in the English clone, and 10, 10.5 and 10.5 h, respectively, in the Scottish clone. High incidences of winged females and males were observed at all scotophases longer than the critical night length in both clones. In addition, in the English clone, the incidences of winged female and male producers in continuous darkness were 0% at 15 and 17.5°C, and 6% at 12.5°C. In the Scottish clone, however, continuous darkness resulted in high incidences of both winged female and male producers at 12.5 and 15°C, but 0% winged female producers and 6% male producers at 17.5°C. In scotophases shorter than the critical night length, including continuous light, no males or winged females were observed in either clone under the non‐crowded rearing conditions used. The results are discussed in terms of the ‘double circadian oscillator model’ for photoperiodic induction.  相似文献   

15.
The Russian wheat aphid, Diuraphis noxia (Kurdjumov), is a small grains pest of worldwide economic importance. The Russian wheat aphid is polyphagous and may encounter differential selective pressures from noncultivated grass hosts. Aphid biotypic diversity can disrupt the progress of plant breeding programs, leading to a decreased ability to manage this pest. The goal of this research was to quantify Russian wheat aphid biotype 2 (RWA2) reproductive and development rates on five common noncultivated grass hosts to gain information about host quality, potential refuges, and sources of selection pressure. First, RWA2 reproduction was compared on crested wheatgrass (Agropyron cristatum, (L.) Gaertn.), intermediate wheatgrass (Elytrigia intermedia, (Host) Nevski), slender wheatgrass (Elymus trachycaulus, (Link) Gould ex Shinners), western wheatgrass (Pascopyrum smithi, (Rydb.) A. L?ve), and foxtail barley (Hordeum jubatum, (L.) Tesky) at 18–24°C. Second, RWA2 reproduction was compared on intermediate and crested wheatgrass at three temperature regimes 13–18°C, 18–24°C, and 24–29°C. At moderate temperatures (18–24°C), the intrinsic rate of increase values for all five hosts ranged from 0.141 to 0.199, indicating the possibility for strong population sources on all tested hosts. Aphids feeding on crested and intermediate wheatgrass at the 13–18°C temperature had lower fecundity, less nymph production days, longer generational times, and lower intrinsic rate of increase than aphids feeding at the 18–24°C temperature regime. Aphids feeding at 24–29°C did not survive long enough to reproduce. The positive intrinsic rates of increase in Russian wheat aphid on the wheatgrasses suggest that these grasses can support aphid populations at moderate to low temperatures.  相似文献   

16.
  • 1 Aphids, similar to all insects, are ectothermic and, consequently, are greatly affected by environmental conditions. The peach potato aphid Myzus persicae (Sulzer) has a global distribution, although it is not known whether populations display regional adaptations to distinct climatic zones along its distribution and vary in their ability to withstand and acclimate to temperature extremes. In the present study, lethal temperatures were measured in nine anholocyclic clones of M. persicae collected along a latitudinal cline of its European distribution from Sweden to Spain. The effects of collection origin and intra‐ and intergenerational acclimation on cold and heat tolerance, as determined by upper and lower lethal temperatures (ULT50 and LLT50, respectively), were investigated.
  • 2 Lethal temperatures of M. persicae were shown to be plastic and could be altered after acclimation over just one generation. Lower lethal temperatures were significantly depressed in eight of nine clones after acclimation for one generation at 10°C (range: ?13.3 to ?16.2°C) and raised after acclimation at 25°C (range: ?10.7 to ?11.6°C) compared with constant 20°C (range: ?11.9 to ?12.9°C). Upper lethal temperatures were less plastic, although significantly increased after one generation at 25°C (range: 41.8–42.4°C) and in five of nine clones after acclimation at 10°C. There was no evidence of intergenerational acclimation over three generations.
  • 3 Thermal tolerance ranges were expanded after acclimation at 10 and 25°C compared with constant 20°C, resulting in aphids reared at 10°C surviving over a temperature range that was approximately 2–6°C greater than those reared at 25°C.
  • 4 There was no clear relationship between lethal temperatures and latitude. Large scale mixing of clones may occur across Europe, thus limiting local adaption in thermal tolerance. Clonal type, as identified by microsatellite analysis, did show a relationship with thermal tolerance, notably with Type O clones being the most thermal tolerant. Clonal types may respond independently to climate change, affecting the relative proportions of clones within populations, with consequent implications for biodiversity and agriculture.
  相似文献   

17.
Understanding tolerance of thermal extremes by pest insects is essential for developing integrated management strategies, as tolerance traits can provide insights into constraints on activity and survival. A major question in thermal biology is whether thermal limits vary systematically with microclimate variation, or whether other biotic or abiotic factors can influence these limits in a predictable manner. Here, we report the results of experiments determining thermal limits to activity and survival at extreme temperatures in the stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae), collected from either Saccharum spp. hybrids (sugarcane) (Poaceae) or Cyperus papyrus L. (Cyperaceae) and then reared under standard conditions in the laboratory for 1–2 generations. Chill‐coma temperature (CTmin), critical thermal maximum (CTmax), lower lethal temperatures (LLT), and freezing temperature between E. saccharina collected from the two host plants were compared. CTmin and CTmax of E. saccharina moths collected from sugarcane were significantly lower than those from C. papyrus (CTmin = 2.8 ± 0.4 vs. 3.9 ± 0.4 °C; CTmax = 44.6 ± 0.1 vs. 44.9 ± 0.2 °C). By contrast, LLT of moths and freezing temperatures of pupae did not vary with host plant [LLT for 50% (LT50) of the moth population, when collected from sugarcane: ?3.2 ± 0.5 °C, from C. papyrus: ?3.9 ± 0.8 °C]. Freezing temperatures of pupae collected from C. papyrus were ?18.0 ± 1.0 °C and of those from sugarcane ?17.5 ± 1.8 °C. The E. saccharina which experienced the lowest minimum temperature (in C. papyrus) did not have the lowest CTmin, although the highest estimate of CTmax was found in E. saccharina collected from C. papyrus and this was also the microsite which reported the highest maximum temperatures. These results therefore suggest that host plant may strongly mediate lower critical thermal limits, but not necessarily LLT or freezing temperatures. These results have significant implications for ongoing pest management and thermal biology of these and other insects.  相似文献   

18.
Lysiphlebus testaceipes (Hymenoptera: Braconidae: Aphidiinae) is a generalist endoparasitoid attacking more than 100 aphid species. In L. testaceipes, wing fanning is a main male courtship display evoked by a female‐borne sex pheromone. However, no information is available on the characteristics and behavioral role of male fanning during courtship in this parasitoid. Here, the courtship behavior of a wild strain of L. testaceipes was quantified and the male wing fanning performances were analyzed through high‐speed video recordings and examined in relation to mating success. Courtship sequence of wild L. testaceipes did not substantially differ from that previously reported for other populations mass reared on aphids. We observed that the male courtship duration did not affect mating success. However, video analysis revealed that the males producing high‐frequency fanning signals achieved higher mating success over those that display low‐frequency fanning. Wing fanning before successful and unsuccessful courtship differed in amplitude of wing movements and alignment toward the mate, highlighting that frontal courtship positively influence the female mating decisions. This study increases knowledge on sexual behavior in a key parasitoid of aphids, highlighting the importance of wing fanning among the range of sensory modalities used in the sexual communication of L. testaceipes. From a practical point of view, this information is useful in L. testaceipes‐based biocontrol strategies, since it can help to establish parameters for quality checking of mass‐reared wasps over time.  相似文献   

19.
Host stage preference, functional response and mutual interference of Aphidius matricariae (Haliday) (Hym.: Braconidae: Aphidiinae), parasitoid of the black bean aphid, Aphis fabae Scopoli (Hom.: Aphididae) were investigated in a growth chamber at a temperature of 25°C, 65% relative humidity and a photoperiod of 16 h light : 8 h dark on the PP8 variety of sugar beet. Nicholson's model and linear regression were used to determine per capita searching efficiency and interference coefficient, respectively. The highest parasitism percentage was observed on the third instar nymphs of A. fabae in both choice and no‐choice preference tests. There was significant difference between rates of parasitism on different stages of A. fabae (P < 0.01). Using logistic regression, a type II functional response was determined for A. matricariae. The Holling and Rogers models were used for estimating searching efficiency (a) and handling time (Th). The data was fitted by the Rogers equation better than by the Holling disc equation based on the R2 values. The estimated values of searching efficiency and handling time were 0.040 ± 0.013/h and 3.439 ± 0.383 h, respectively. The per capita searching efficiency decreased significantly from 0.272 to 0.139 as parasitoid densities increased from one to five. Therefore, different host‐parasitoid ratios could affect the efficacy of A. matricariae.  相似文献   

20.
When the ambient temperature is lowered to an insect's lower thermal limit, the insect enters into chill coma. Chill coma temperature and chill coma recovery can vary within species as a result of thermal acclimation, although the physiological basis of the onset of chill coma remains poorly understood. The present study investigates how the temperature of acclimation (0, 5, 10, 15 and 20 °C for 2 or 7 days) affects chill coma temperature and oxygen consumption in adult Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). It is hypothesized that the threshold decline in metabolic rate corresponds to the entry into chill coma. Oxygen consumption (as a proxy of metabolism) is measured across the chill coma temperature threshold, and a strong decline in oxygen consumption is expected at entry into chill coma. The acclimation decreases the chill coma temperature significantly from 6.6 ± 1.1 °C in control insects to 3.1 ± 0.7 °C in those acclimated to 10 °C. The change in metabolic rate (Q10) after acclimation to temperatures ranging from 10 to 20 °C is 3.7. Despite acclimation, the metabolic rate of A. diaperinus conforms to Arrhenius kinetics, suggesting that the response of this beetle does not show metabolic compensation. The data suggest the existence of a threshold decline in metabolic rate during cooling that coincides with the temperature at which an insect goes into chill coma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号