共查询到20条相似文献,搜索用时 15 毫秒
1.
Benno I. Simmons Jeferson Vizentin‐Bugoni Pietro K. Maruyama Peter A. Cotton Oscar H. Marín‐Gmez Carlos Lara Liliana Rosero‐Lasprilla María A. Maglianesi Raul Ortiz‐Pulido Mrcia A. Rocca Liclia C. Rodrigues Boris A. Tinoco Marcelo F. Vasconcelos Marlies Sazima Ana M. Martín Gonzlez Jesper Sonne Carsten Rahbek Lynn V. Dicks Bo Dalsgaard William J. Sutherland 《Oikos》2019,128(9):1287-1295
Abundant pollinators are often more generalised than rare pollinators. This could be because abundant species have more chance encounters with potential interaction partners. On the other hand, generalised species could have a competitive advantage over specialists, leading to higher abundance. Determining the direction of the abundance–generalisation relationship is therefore a ‘chicken‐and‐egg’ dilemma. Here we determine the direction of the relationship between abundance and generalisation in plant–hummingbird pollination networks across the Americas. We find evidence that hummingbird pollinators are generalised because they are abundant, and little evidence that hummingbirds are abundant because they are generalised. Additionally, most patterns of species‐level abundance and generalisation were well explained by a null model that assumed interaction neutrality (interaction probabilities defined by species relative abundances). These results suggest that neutral processes play a key role in driving broad patterns of generalisation in animal pollinators across large spatial scales. 相似文献
2.
Serguei Saavedra Rudolf P. Rohr Jens M. Olesen Jordi Bascompte 《Ecology and evolution》2016,6(4):997-1007
The foundational concepts behind the persistence of ecological communities have been based on two ecological properties: dynamical stability and feasibility. The former is typically regarded as the capacity of a community to return to an original equilibrium state after a perturbation in species abundances and is usually linked to the strength of interspecific interactions. The latter is the capacity to sustain positive abundances on all its constituent species and is linked to both interspecific interactions and species demographic characteristics. Over the last 40 years, theoretical research in ecology has emphasized the search for conditions leading to the dynamical stability of ecological communities, while the conditions leading to feasibility have been overlooked. However, thus far, we have no evidence of whether species interactions are more conditioned by the community''s need to be stable or feasible. Here, we introduce novel quantitative methods and use empirical data to investigate the consequences of species interactions on the dynamical stability and feasibility of mutualistic communities. First, we demonstrate that the more nested the species interactions in a community are, the lower the mutualistic strength that the community can tolerate without losing dynamical stability. Second, we show that high feasibility in a community can be reached either with high mutualistic strength or with highly nested species interactions. Third, we find that during the assembly process of a seasonal pollinator community located at The Zackenberg Research Station (northeastern Greenland), a high feasibility is reached through the nested species interactions established between newcomer and resident species. Our findings imply that nested mutualistic communities promote feasibility over stability, which may suggest that the former can be key for community persistence. 相似文献
3.
The interaction between the immune system and pathogens is often characterised as a predator–prey interaction. This characterisation ignores the fact that both require host resources to reproduce. Here, we propose novel theory that considers how these resource requirements can modify the interaction between the immune system and pathogens. We derive a series of models to describe the energetic interaction between the immune system and pathogens, from fully independent resources to direct competition for the same resource. We show that increasing within‐host resource supply has qualitatively distinct effects under these different scenarios. In particular, we show the conditions for which pathogen load is expected to increase, decrease or even peak at intermediate resource supply. We survey the empirical literature and find evidence for all three patterns. These patterns are not explained by previous theory, suggesting that competition for host resources can have a strong influence on the outcome of disease. 相似文献
4.
Ecological networks, nestedness and sampling effort 总被引:5,自引:0,他引:5
5.
6.
Paul J. CaraDonna Laura A. Burkle Benjamin Schwarz Julian Resasco Tiffany M. Knight Gita Benadi Nico Blüthgen Carsten F. Dormann Qiang Fang Jochen Fründ Benoit Gauzens Christopher N. Kaiser‐Bunbury Rachael Winfree Diego P. Vzquez 《Ecology letters》2021,24(1):149-161
Most studies of plant–animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human‐driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant–animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions. 相似文献
7.
WESLEY DÁTTILO VÍCTOR RICO‐GRAY DOMINGOS J. RODRIGUES THIAGO J. IZZO 《Ecological Entomology》2013,38(4):374-380
- Recently, several studies have focused on structural properties of ant–plant networks. However, little is known about the role of abiotic factors on these networks.
- As a result of different abiotic factors that can affect the patterns of ant–plant interactions, it was tested whether soil pH and canopy cover contribute to variation in the nestedness of mutualistic (plants with extrafloral nectar–EFN) and neutral (plants without EFN) ant–plant networks.
- It was shown that only mutualistic networks were affected by soil pH. It was suggested that this may occur because the variation in soil pH directly influences the secreted nectar, and as there is a preference for nectar composition by ants, this could change the patterns of interaction in mutualistic networks. As prey availability is possibly the main factor influencing ants' presence on plants without EFN, soil pH should have little or no influence on the patterns of interaction in neutral networks.
- On the other hand, nestedness was not affected by canopy cover in mutualistic and neutral networks. In spite of that canopy cover (light availability) is directly related to the amount of nectar secreted, the volume of nectar may not be important for the structure of the networks. However, canopy cover varied little in this study site. This small variation could not be enough to change the nested pattern in mutualistic and neutral networks.
- In short, the present results show that the abiotic factors that affect the availability and quality of food resources may have important effects on the structure of trophic interactions in non‐symbiotic ant–plant networks.
8.
J. Jelle Lever Egbert H. van Nes Marten Scheffer Jordi Bascompte 《Ecology letters》2014,17(3):350-359
Declines in pollinator populations may harm biodiversity and agricultural productivity. Little attention has, however, been paid to the systemic response of mutualistic communities to global environmental change. Using a modelling approach and merging network theory with theory on critical transitions, we show that the scale and nature of critical transitions is likely to be influenced by the architecture of mutualistic networks. Specifically, we show that pollinator populations may collapse suddenly once drivers of pollinator decline reach a critical point. A high connectance and/or nestedness of the mutualistic network increases the capacity of pollinator populations to persist under harsh conditions. However, once a tipping point is reached, pollinator populations collapse simultaneously. Recovering from this single community‐wide collapse requires a relatively large improvement of conditions. These findings may have large implications for our view on the sustainability of pollinator communities and the services they provide. 相似文献
9.
Wesley Dáttilo Cecilia Díaz‐Castelazo Victor Rico‐Gray 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(2):405-414
Extrafloral nectar (EFN) is a predictable and renewable resource for many ant colonies, and different ant species compete strongly to obtain and monopolize this highly nutritious food resource. Despite the importance of competition in structuring patterns of ant–plant interactions, this biological mechanism has been largely ignored in studies involving ant–plant networks. In this study we investigate the role of ant dominance hierarchy in structuring an ecological network involving ants and EFN‐bearing plants in a tropical coastal environment in Mexico. We show that within a nested ant–plant network, ant species found in the central core of highly interacting species were competitively superior, showing massive recruitment and resource domination, compared with peripheral species with fewer interactions. Moreover, we also observed that both central and peripheral ant species have the ability to quickly find the food resource. However, after 2 h of observation, central ant species are more frequently collected on the food resource when compared with peripheral species. We hypothesize that the existence of a central core of competitive ant species may indicate that most plant species found within ant–plant networks could be better protected against herbivory by these dominant ant species. In short, our results highlight the importance of competition and monopolization in the resource use by ants in the maintenance of the nested pattern in ant–plant mutualistic networks. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 405–414. 相似文献
10.
A frequent observation in plant–animal mutualistic networks is that abundant species tend to be more generalised, interacting with a broader range of interaction partners than rare species. Uncovering the causal relationship between abundance and generalisation has been hindered by a chicken‐and‐egg dilemma: is generalisation a by‐product of being abundant, or does high abundance result from generalisation? Here, we analyse a database of plant–pollinator and plant–seed disperser networks, and provide strong evidence that the causal link between abundance and generalisation is uni‐directional. Specifically, species appear to be generalists because they are more abundant, but the converse, that is that species become more abundant because they are generalists, is not supported by our analysis. Furthermore, null model analyses suggest that abundant species interact with many other species simply because they are more likely to encounter potential interaction partners. 相似文献
11.
Scavenging is a widespread phenomenon in vertebrate communities which has rarely been accounted for, in spite of playing an essential role in food webs by enhancing nutrient recycling and community stability. Most studies on scavenger assemblages have often presented an oversimplified view of carrion foraging. Here, we applied for the first time the concept of nestedness to the study of a species-rich scavenger community in a forest ecosystem (Białowieża Primeval Forest, Poland) following a network approach. By analysing one of the most complete datasets existing up to now in a pristine environment, we have shown that the community of facultative scavengers is not randomly assembled but highly nested. A nested pattern means that species-poor carcasses support a subset of the scavenger assemblage occurring at progressively species-rich carcasses. This result contradicts the conventional view of facultative scavenging as random and opportunistic and supports recent findings in scavenging ecology. It also suggests that factors other than competition play a major role in determining community structure. Nested patterns in scavenger communities appear to be promoted by the high diversity in carrion resources and consumers, the differential predictability of the ungulate carcass types and stressful environmental conditions. 相似文献
12.
A uni-directional consumer-resource system of two species is analyzed. Our aim is to understand the mechanisms that determine how the interaction outcomes depend on the context of the interaction; that is, on the model parameters. The dynamic behavior of the model is described and, in particular, it is demonstrated that no periodic orbits exist. Then the parameter (factor) space is shown to be divided into four regions, which correspond to the four forms of interaction outcomes; i.e. mutualism, commensalism, parasitism and amensalism. It is shown that the interaction outcomes of the system transition smoothly among these four forms when the parameters of the system are varied continuously. Varying each parameter individually or varying pairs of parameters can also lead to smooth transitions between the interaction outcomes. The analysis leads to both conditions for which each species achieves its maximal density, and situations in which periodic oscillations of the interaction outcomes emerge. 相似文献
13.
Peng Ren;Xingfeng Si;Ping Ding; 《Ecography》2022,2022(8):e06102
Species and their interactions are more dynamic over time and space in fragmented habitats than in continuous habitats. In fragmented habitats, the low nestedness of mutualistic networks may be related to the position change of stable (high persistence over time/space) species and interactions in the networks. Previous studies have shown that stable species and interactions tend to be in the core position of mutualistic networks. However, in fragmented habitats, it remains unknown whether stable species or interactions still tend to be in the core position. To address this gap, here we evaluated the correlation between the position of proximity to the network core and the temporal/spatial stability of species and interactions, using the observation of 42 plant–pollinator networks conducted in a fragmented island landscape over 3 years. We showed that temporally/spatially stable species and interactions deviated from the network core to varying degrees. Temporally stable plants were most likely to deviate from the network core, followed by pollinators and interactions, while only spatially stable pollinators tend to deviate from the network core. When unstable species (present in few time/space points, typically specialists) and interactions occupy the network core, they cannot interact with most species in the network as generalists do, resulting in the decrease of network nestedness. Therefore, from the perspective of position and stability, stable species and interactions deviate from the network core in fragmented habitats, which is an important reason for the decrease of nestedness in mutualistic networks. Our study suggests that protecting plants which occupy the core in large plant–pollinator networks is essential for maintaining the network persistence in fragmented habitats. 相似文献
14.
Matthias Albrecht Benigno Padrón Ignasi Bartomeus Anna Traveset 《Proceedings. Biological sciences / The Royal Society》2014,281(1788)
Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes. 相似文献
15.
Fernanda S. Valdovinos Berry J. Brosi Heather M. Briggs Pablo Moisset de Espanés Rodrigo Ramos‐Jiliberto Neo D. Martinez 《Ecology letters》2016,19(10):1277-1286
Much research debates whether properties of ecological networks such as nestedness and connectance stabilise biological communities while ignoring key behavioural aspects of organisms within these networks. Here, we computationally assess how adaptive foraging (AF) behaviour interacts with network architecture to determine the stability of plant–pollinator networks. We find that AF reverses negative effects of nestedness and positive effects of connectance on the stability of the networks by partitioning the niches among species within guilds. This behaviour enables generalist pollinators to preferentially forage on the most specialised of their plant partners which increases the pollination services to specialist plants and cedes the resources of generalist plants to specialist pollinators. We corroborate these behavioural preferences with intensive field observations of bee foraging. Our results show that incorporating key organismal behaviours with well‐known biological mechanisms such as consumer‐resource interactions into the analysis of ecological networks may greatly improve our understanding of complex ecosystems. 相似文献
16.
17.
Community ecology involves studying the interdependence of species with each other and their environment to predict their geographical distribution and abundance. Modern species distribution analyses characterise species‐environment dependency well, but offer only crude approximations of species interdependency. Typically, the dependency between focal species and other species is characterised using other species’ point occurrences as spatial covariates to constrain the focal species’ predicted range. This implicitly assumes that the strength of interdependency is homogeneous across space, which is not generally supported by analyses of species interactions. This discrepancy has an important bearing on the accuracy of inferences about habitat suitability for species. We introduce a framework that integrates principles from consumer–resource analyses, resource selection theory and species distribution modelling to enhance quantitative prediction of species geographical distributions. We show how to apply the framework using a case study of lynx and snowshoe hare interactions with each other and their environment. The analysis shows how the framework offers a spatially refined understanding of species distribution that is sensitive to nuances in biophysical attributes of the environment that determine the location and strength of species interactions. 相似文献
18.
Fernanda S. Valdovinos 《Ecology letters》2019,22(9):1517-1534
Plant–animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician's standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist's standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short‐term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve. 相似文献
19.
Howarth B Edmunds M Gilbert F 《Evolution; international journal of organic evolution》2004,58(2):367-375
We tested the prediction that, if hoverflies are Batesian mimics, this may extend to behavioral mimicry such that their numerical abundance at each hour of the day (the daily activity pattern) is related to the numbers of their hymenopteran models. After accounting for site, season, microclimatic responses, and general hoverfly abundance at three sites in northwestern England, the residual numbers of mimics were significantly correlated positively with their models nine times of 17. Sixteen of 17 relationships were positive, itself a highly significant nonrandom pattern. Several eristaline flies showed significant relationships with honeybees even though some of them mimic wasps or bumblebees, perhaps reflecting an ancestral resemblance to honeybees. There was no evidence that good and poor mimics differed in their daily activity pattern relationships with models. However, the common mimics showed significant activity pattern relationships with their models, whereas the rarer mimics did not. We conclude that many hoverflies show behavioral mimicry of their hymenopteran models. 相似文献
20.
Food web theory suggests that the placement of a weak interaction is critical such that under some conditions even one well‐placed weak interaction can stabilise multiple strong interactions. This theory suggests that complex stable webs may be built from pivotal weak interactions such that the removal of even one to a few keystone interactions can have significant cascading impacts on whole system diversity and structure. However, the connection between weak interactions, derived from the theory of modular food web components, and keystone species, derived from empirical results, is not yet well understood. Here, we develop numerical techniques to detect potential oscillators hidden in complex food webs, and show that, both in random and real food webs, keystone consumer–resource interactions often operate to stabilise them. Alarmingly, this result suggests that nature frequently may be dangerously close to precipitous change with even the loss of one or a few weakly interacting species. 相似文献