首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and p-coumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging. For this reason, the endemic diffusion of B. bruxellensis leads to consistent economic losses in the wine industry. Considering the interest in reducing sulfur dioxide use during winemaking, in recent years, biological alternatives, such as the use of tailored selected yeast and bacterial strains inoculated to promote AF and MLF, are actively sought as biocontrol agents to avoid the “Bretta” character in wines. Here, we review the importance of dedicated characterization and selection of starter cultures for AF and MLF in wine, in order to reduce or prevent both growth of B. bruxellensis and its production of volatile phenols in the matrix.

  相似文献   

2.
Aims: To investigate whether the presence of Pichia guilliermondii impacts on the production of volatile phenols from mixed wine fermentations with Dekkera bruxellensis and Saccharomyces cerevisiae. Methods and Results: Four inoculation strategies were performed in small‐scale fermentations involving P. guilliermondii, D. bruxellensis and S. cerevisiae using Syrah grape juice supplemented with 100 mg l?1 of p‐coumaric acid. High pressure liquid chromatography was used for the quantification or volatile phenols. Significant high levels of 4‐ethylphenol and 4‐ethylguaicol (720 and 545 μg l?1, respectively), as well as the highest levels of 4‐vinylphenol (>4500 μg l?1), were observed when P. guilliermondii species was inoculated from the beginning of the fermentation. Conclusions: The metabolic interaction occurring between the high vinylphenol producer species P. guilliermondii and D. bruxellensis exhibiting a high vinylphenol reductase activity resulted in an increased production of volatile phenols in wine. Significance and Impact of the Study: Pichia guilliermondii must be considered a very important spoilage yeast in the wine industry capable of producing large amounts of volatile phenols.  相似文献   

3.
Purpose

Brettanomyces bruxellensis is a serious source of concern for winemakers. The production of volatile phenols by the yeast species confers to wine unpleasant sensory characteristics which are unacceptable by the consumers and inevitably provoke economic loss for the wine industry. This ubiquitous yeast is able to adapt to all winemaking steps and to withstand various environmental conditions. Moreover, the ability of B. bruxellensis to adhere and colonize inert materials can be the cause of the yeast persistence in the cellars and thus recurrent wine spoilage. We therefore investigated the surface properties, biofilm formation capacity, and the factors which may affect the attachment of the yeast cells to surfaces with eight strains representative of the genetic diversity of the species.

Methods

The eight strains of B. bruxellensis were isolated from different geographical and industrial fermentation origins. The cells were grown in synthetic YPD medium containing 1% (w/v) yeast extract (Difco Laboratories, Detroit), 2% (w/v) bacto peptone (Difco), and 1% (w/v) glucose. Surface physicochemical properties as electrophoretic mobility and adhesion to hydrocarbon of the cells were studied. The ability of the strains to form biofilm was quantified using a colorimetric microtiter 96-well polystyrene plate. Biochemical characteristics were examined by colorimetric methods as well as by chemical analysis.

Result

Our results show that the biofilm formation ability is strain-dependent and suggest a possible link between the physicochemical properties of the studied strains and their corresponding genetic group.

Conclusion

The capacity to detect and identify the strains of the spoilage yeast based on their biofilm formation abilities may help to develop more efficient cleaning procedures and preventing methods.

  相似文献   

4.

Aims

Dekkera bruxellensis and Pichia guilliermondii are contaminating yeasts in wine due to the production of phenolic aromas. Although the degradation pathway of cinnamic acids, precursors of these phenolic compounds has been described in D. bruxellensis, no such pathway has been described in P. guilliermondii.

Methods and Results

A molecular and physiological characterization of 14 D. bruxellensis and 15 P. guilliermondii phenol‐producing strains was carried out. Both p‐coumarate decarboxylase (CD) and vinyl reductase (VR) activities, responsible for the production of volatile phenols, were quantified and the production of 4‐vinylphenol and 4‐ethylphenol were measured. All D. bruxellensis and some P. guilliermondii strains showed the two enzymatic activities, whilst 11 of the 15 strains of this latter species showed only CD activity and did not produce 4‐EP in the assay conditions. Furthermore, PCR products obtained with degenerated primers showed a low homology with the sequence of the gene for a phenyl acrylic acid decarboxylase activity described in Saccharomyces cerevisiae.

Conclusions

D. bruxellensis and P. guilliermondii may share a similar metabolic pathway for the degradation of cinnamic acids.

Significance and Impact of the Study

This is the first work that analyses the CD and VR activities in P. guilliermondii, and the results suggest that within this species, there are differences in the metabolization of cinnamic acids.  相似文献   

5.
This work deals with biogenic amine production by yeast strains isolated from grapes and wines. A total of 50 strains were tested for their capacity to produce biogenic amines in wine. In general, all the species produced very low or non-detectable amounts of histamine, whereas methylamine and agmatine were formed by all the species considered. The highest concentration of total biogenic amines was formed by Brettanomyces bruxellensis, with an average value of 15 mg/l, followed by Saccharomyces cerevisiae with an average of 12.14 mg/l. The other species formed less than 10 mg of total biogenic amines per litre. Wines fermented with the most fermentative strains of S. cerevisiae species had the highest contents of ethanolamine, from 2.3 to 16 mg/l, and of agmatine, from 3.1 to 7.5 mg/l. The strains of the other species, which exhibited a low fermentative ability, Kloeckera apiculata, B. bruxellensis and Metschnikowia pulcherrima, varied in the production of agmatine and phenylethylamine. A significant variability in the production of cadaverine was characteristic of Candida stellata strains, which varied also in ethanolamine production. Our results emphasize the importance of using selected strains of S. cerevisiae, not only for the expression of desirable technological traits, but also to avoid potentially negative effects on human health. Therefore, the characterization of strains of S. cerevisiae for the 'production of biogenic amines' becomes of applicative interest.  相似文献   

6.
In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels.  相似文献   

7.
Inventory and monitoring of wine microbial consortia   总被引:2,自引:0,他引:2  
The evolution of the wine microbial ecosystem is generally restricted to Saccharomyces cerevisiae and Oenococcus oeni, which are the two main agents in the transformation of grape must into wine by acting during alcoholic and malolactic fermentation, respectively. But others species like the yeast Brettanomyces bruxellensis and certain ropy strains of Pediococcus parvulus can spoil the wine. The aim of this study was to address the composition of the system more precisely, identifying other components. The advantages of the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach to wine microbial ecology studies are illustrated by bacteria and yeast species identification and their monitoring at each stage of wine production. After direct DNA extraction, PCR-DGGE was used to make the most exhaustive possible inventory of bacteria and yeast species found in a wine environment. Phylogenetic neighbor-joining trees were built to illustrate microbial diversity. PCR-DGGE was also combined with population enumeration in selective media to monitor microbial changes at all stages of production. Moreover, enrichment media helped to detect the appearance of spoilage species. The genetic diversity of the wine microbial community and its dynamics during winemaking were also described. Most importantly, our study provides a better understanding of the complexity and diversity of the wine microbial consortium at all stages of the winemaking process: on grape berries, in must during fermentation, and in wine during aging. On grapes, 52 different yeast species and 40 bacteria could be identified. The diversity was dramatically reduced during winemaking then during aging. Yeast and lactic acid bacteria were also isolated from very old vintages. B. bruxellensis and O. oeni were the most frequent.  相似文献   

8.
Viability and culturability of eight Dekkera bruxellensis strains in wine along with the accumulation of volatile phenols in response to increasing concentrations of molecular sulphur dioxide (mSO2) were investigated. mSO2 concentrations up to 1 mg/L induced the non-culturable state of a portion of the population in all the strains to a different extent for each strain, although the cells were still viable. At 1.4 mg/L mSO2, cells were non-culturable, though 0.38–29.01 % of cells retained their viability. When exposed to 2.1 mg/L mSO2, viable cells were not detected. Up to 0.24 mg/L 4-vinylguaiacol and up to 0.73 mg/L 4-ethylphenol were accumulated by non-culturable and dead Dekkera bruxellensis strains, respectively. The concentration of mSO2 needed for the transition from viable to non-culturable state of D. bruxellensis strains was higher in wine than in synthetic wine medium. The volatile phenols accumulated in wine were different from those produced in synthetic wine medium, although their accumulation kinetics were similar.  相似文献   

9.
Brettanomyces/Dekkera yeasts have been identified as part of the grape yeast flora. They are well known for colonizing the cellar environmental and spoiling wines, causing haze, turbidity and strong off-flavours in wines and enhancing the volatile acidity. As the general practices applied to combat Brettanomyces/Dekkera yeasts are not particularly appropriate during wine ageing and storage, a biological alternative to curtailing their growth would be welcomed in winemaking. In this study, we investigated the Kluyveromyces wickerhamii killer toxin (Kwkt) that is active against Brettanomyces/Dekkera spoilage yeasts. Purification procedures allowed the identification of Kwkt as a protein with an apparent molecular mass of 72 kDa and without any glycosyl residue. Interestingly, purified Kwkt has fungicidal effects at low concentrations under the physicochemical conditions of winemaking. The addition of 40 and 80 mg L(-1) purified Kwkt showed efficient antispoilage effects, controlling both growth and metabolic activity of sensitive spoilage yeasts. At these two killer toxin concentrations, compounds known to contribute to the 'Brett' character of wines, such as ethyl phenols, were not produced. Thus, purified Kwkt appears to be a suitable biological strategy to control Brettanomyces/Dekkera yeasts during fermentation, wine ageing and storage.  相似文献   

10.
The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.  相似文献   

11.
12.
Aims:  Brettanomyces / Dekkera bruxellensis is a particularly troublesome wine spoilage yeast. This work was aimed at characterizing its behaviour in terms of growth and volatile compound production in red wine.
Methods and Results:  Sterile red wines were inoculated with 5 × 103 viable cells ml−1 of three B. bruxellensis strains and growth and volatile phenol production were followed for 1 month by means of plate counts and gas chromatography-mass spectrometry (GC-MS) respectively. Maximum population levels generally attained 106–107 colony forming units (CFU) ml−1 and volatile phenol concentrations ranged from 500 to 4000 μg l−1. Brettanomyces bruxellensis multiplication was also accompanied by the production of organic acids (from C2 to C10), short chain acid ethyl-esters and the 'mousy off-flavour' component 2-acetyl-tetrahydropyridine.
Conclusions:  Different kinds of 'Brett character' characterized by distinct metabolic and sensory profiles can arise in wine depending on the contaminating strain, wine pH and sugar content and the winemaking stage at which contamination occurs.
Significance and Impact of the Study:  We identified new chemical markers that indicate wine defects caused by B. bruxellensis. Further insight was provided into the role of some environmental conditions in promoting wine spoilage.  相似文献   

13.
Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridization (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells’ autofluorescence, fluorophore inadequate selection and probes’ low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used, and the matrix and cells’ fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment, a red-emitting fluorophore should be used. Good probe performance and specificity were achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours. Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.  相似文献   

14.
The effect of chitosan on Saccharomyces cerevisiae (the yeast that carries out alcohol fermentation), Brettanomyces bruxellensis and Brettanomyces intermedius (contaminants of alcohol fermentations), was investigated. The effect of chitosan was tested on each yeast, as well as on mixed cultivations of S. cerevisiae + B. bruxellensis and S. cerevisiae + B. intermedius. Chitosan enhanced the lag period of both strains of Brettanomyces (80 h for B. bruxellensis and 170 h for B. intermedius with 6 and 2 g/l chitosan, respectively). The growth rate of S. cerevisiae was inversely proportional to the chitosan concentration; the former was 50% when 6 g/l polysaccharide was used. Moreover, in mixed cultivations of S. cerevisiae and Brettanomyces strains, it was found that both B. bruxellensis and B. intermedius failed to grow while growth of S. cerevisiae was not affected (using 3 and 6 g/l chitosan, respectively). An interesting collateral result was that the presence of chitosan accelerated the consumption of glucose in the mixed cultivations (60 h instead of 120 h).  相似文献   

15.
Hydrogen sulfide (H2S) is a powerful aroma compound largely produced by yeast during fermentation. Its occurrence in wines and other fermented beverages has been associated with off-odors described as rotten egg and/or sewage. While the formation of hydrogen sulfide (H2S) during fermentation has been extensively studied, it is the final H2S content of wine that is actually linked to potential off-odors. Nevertheless, factors determining final H2S content of wine have received little attention, and it is commonly assumed that high H2S-forming fermentations will result in high final concentrations of H2S. However, a clear relationship has never been established. In this report, we investigated the contribution of yeast strain and nitrogen addition to H2S formation during fermentation and its consequent occurrence the resulting wines. Five commercial Saccharomyces cerevisiae wine yeast strains were used to ferment a Chardonnay juice containing 110 mg/l of YAN (yeast assimilable nitrogen), supplemented with di-ammonium phosphate (DAP) to increase YAN concentration to moderate (260 mg/l) and high (410 mg/l) levels. In contrast to the widely reported decrease in H2S production in response to DAP addition, a non-linear relationship was found such that moderate DAP supplementation resulted in a remarkable increase in H2S formation by each of the five wine yeasts. H2S content of the finished wine was affected by yeast strain, YAN, and fermentation vigor. However, we did not observe a correlation between concentration of H2S in the finished wines and H2S produced during fermentation, with low-forming fermentations often having relatively high final H2S and vice versa. Management of H2S in wine through nitrogen supplementation requires knowledge of initial YAN and yeast H2S characteristics.  相似文献   

16.
Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles.  相似文献   

17.
Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 g l−1 acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO2) in the concentration range 95–170 mg l−1 inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO2 concentrations up to 70 mg l−1. Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.  相似文献   

18.
Aims: The objective of this study was to investigate the inactivation of a selected yeast Dekkera bruxellensis strain 4481 in red wine by application of low electric current treatment (LEC). Methods and Results: LEC (200 mA) was applied for 60 days to a red wine, Montepulciano d’Abruzzo, in an alternative strategy to the SO2 addition during wine storage. The LEC effect on both cell activity and microflora viability was assessed. LEC decreased significantly the survival viable cells and increased the death rate of D. bruxellensis strain 4481 yeast. A final comparison was made of the main physico‐chemical parameters of the wine after the different treatments. The study suggests the importance of an appropriate LEC treatment which limits wine deterioration in terms of off‐flavours synthesis. Conclusions: The results demonstrate that the growth of undesirable Dekkera can be inhibited by low voltage treatment; LEC was shown to be useful to prevent wine spoilage and has the potential of being a concrete alternative method for controlling wine spoilage. Significance and Impact of the Study: Wine spoilage can be avoided by preventing the growth of undesirable Dekkera yeasts, through the effective use of LEC in the winemaking process.  相似文献   

19.
Food and beverage industries require rapid tests to limit economic losses and one way to do so is via molecular tests. In the present work, DNA capture and secondary probes, were designed to target the ITS (Internal Transcribed) sequences of Brettanomyces bruxellensis, a yeast responsible for the production of off flavours in both wine and beer. ITS1 and ITS2 were found to contain distinct regions with sufficient sequence divergence to make them suitable as specific identification target sites. The dot blot technique was used to determine the sensitivity and specificity of the capture probe. Both probes were, thereafter, adapted to construct an optical fibre genosensor, which produced neither false positives nor false negatives, and was both repeatable and faster with respect to traditional methods, the latter requiring at least one week to detect B. bruxellensis.  相似文献   

20.
A comprehensive understanding of the presence and role of yeasts in bottled wines helps to know and control the organoleptic quality of the final product. The South Region of Brazil is an important wine producer, and the state of “Rio Grande do Sul” (RS) accounts for 90% of Brazilian wines. The state of “Santa Catarina” (SC) started the production in 1975, and is currently the fifth Brazilian producer. As there is little information about yeasts present in Brazilian wines, our main objective was to assess the composition of culturable yeasts associated to bottled wines produced in RS and SC, South of Brazil. We sampled 20 RS and 29 SC bottled wines produced between 2003 and 2011, and we isolated culturable yeasts in non-selective agar plates. We identified all isolates by sequencing of the D1/D2 domain of LSU rDNA or ITS1-5.8 S-ITS2 region, and comparison with type strain sequences deposited in GenBank database. Six yeast species were shared in the final product in both regions. We obtained two spoilage yeast profiles: RS with Zygosaccharomyces bailii and Pichia membranifaciens (Dekkera bruxellensis was found only in specific table wines); and SC with Dekkera bruxellensis and Pichia manshurica. Knowledge concerning the different spoilage profiles is important for winemaking practices in both regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号