首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The benefits and ecosystem services that humans derive from the oceans are threatened by numerous global change stressors, one of which is ocean acidification. Here, we describe the effects of ocean acidification on an upwelling system that already experiences inherently low pH conditions, the California Current. We used an end‐to‐end ecosystem model (Atlantis), forced by downscaled global climate models and informed by a meta‐analysis of the pH sensitivities of local taxa, to investigate the direct and indirect effects of future pH on biomass and fisheries revenues. Our model projects a 0.2‐unit drop in pH during the summer upwelling season from 2013 to 2063, which results in wide‐ranging magnitudes of effects across guilds and functional groups. The most dramatic direct effects of future pH may be expected on epibenthic invertebrates (crabs, shrimps, benthic grazers, benthic detritivores, bivalves), and strong indirect effects expected on some demersal fish, sharks, and epibenthic invertebrates (Dungeness crab) because they consume species known to be sensitive to changing pH. The model's pelagic community, including marine mammals and seabirds, was much less influenced by future pH. Some functional groups were less affected to changing pH in the model than might be expected from experimental studies in the empirical literature due to high population productivity (e.g., copepods, pteropods). Model results suggest strong effects of reduced pH on nearshore state‐managed invertebrate fisheries, but modest effects on the groundfish fishery because individual groundfish species exhibited diverse responses to changing pH. Our results provide a set of projections that generally support and build upon previous findings and set the stage for hypotheses to guide future modeling and experimental analysis on the effects of OA on marine ecosystems and fisheries.  相似文献   

4.
5.
Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates.  相似文献   

6.
Climate change could profoundly affect the status of agricultural insect pests. Several approaches have been used to predict how the temperature and precipitation changes could modify the abundances, distributions or status of insect pests. In this article it is demonstrated how the use of simple models, such as Ricker’s classic equation, including a mechanistic representation of the influence of exogenous forces may improve our predictive capacity of the dynamic behaviour of insect populations. Using data from classical experiments in population ecology, we evaluate how temperature and humidity influence the density of two stored grain insect pest, Tribolium confusum and Callosobruchus chinensis, and then, using the A2 and B2 scenarios proposed by the Intergovernmental Panel on Climate Change and the previous modelling, we develop predictions over the future pest status of T. confusum along South America austral region, and specifically for eight cities in the continental Chilean territory. Tribolium confusum and C. chinensis show qualitatively different responses to the exogenous forcing of temperature and humidity, respectively. Our simulations predict a change in the equilibrium density of T. confusum from 10 to 14% under the moderate B2 scenario and 12 to 22% under the extreme A2 scenario to the period, 2071–2100. Both results imply a severe change in the pest status of this species in the southern region. This study illustrates how the use of theoretically based models may improve our predictive capacity. This approach provides an opportunity to examine the link between invasive species and climate change and how new suitable habitat may become available for species whose niche space is limited in some degree by climatic conditions. The use of different scenarios allows us to examine the sensitivity of the predictions, and to improve the communication with the general public and decision‐makers; a key aspect in integrated pest management.  相似文献   

7.
The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.  相似文献   

8.
Slugs are serious agricultural pests and their activity is strongly driven by ambient temperature and soil moisture. The strength of this relationship has been shown through the development of a deterministic model, based upon temperature and soil moisture conditions alone, which accurately describes the population dynamics and abundance of Deroceras reticulatum . Because of this strong climatic dependence, slug abundance and dynamics are likely to be affected by climate change. We used a validated individual-based model (IbM) of D. reticulatum , to assess the effects of climate change on the abundance of this species in the UK. Climatic scenarios were based on the UKCIP02 predictions and constructed using the LARS-WG stochastic weather generator. The IbM of slugs predicted population dynamics at three time slices (2020s, 2050s and 2080s), and two scenarios of greenhouse gas emissions. The maximum generation number, the number of population peaks, the number of slug-days in each season, the percentage of years when the population passes over a threshold for damage and the percentage of years in which populations go extinct were investigated. Currently, the south-west of the UK has the best conditions for D. reticulatum to thrive, with the north-east of Scotland having the most adverse. By 2080 under both low- and high-emissions scenarios, the north and west of Scotland will have the most favourable conditions for the survival of this species and the east of the UK and Scotland will have the harshest. By 2080 the climate in the north-west of Scotland will become more like the current climate in south-east England, which explains the shift in the pattern of abundance. The north-west of Scotland will have increased slug damage and south-west England and west-Wales will have decreased slug damage with some changes becoming evident by 2020.  相似文献   

9.
One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that insectivorous long-distance migrant species in The Netherlands declined strongly (1984–2004) in forests, a habitat characterized by a short spring food peak, but that they did not decline in less seasonal marshes. Also, within generalist long-distance migrant species, populations declined more strongly in forests than in marshes. Forest-inhabiting migrant species arriving latest in spring declined most sharply, probably because their mismatch with the peak in food supply is greatest. Residents and short-distance migrants had non-declining populations in both habitats, suggesting that habitat quality did not deteriorate. Habitat-related differences in trends were most probably caused by climate change because at a European scale, long-distance migrants in forests declined more severely in western Europe, where springs have become considerably warmer, when compared with northern Europe, where temperatures during spring arrival and breeding have increased less. Our results suggest that trophic mismatches may have become a major cause for population declines in long-distance migrants in highly seasonal habitats.  相似文献   

10.
Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage‐structured, seasonal, nonlinear, two‐sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture‐mark‐recapture analysis, we find that seasonal sea ice concentration anomalies (SICa) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa, because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa. We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa, which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems.  相似文献   

11.
1. We performed demographic analyses on Cassin's auklet Ptychoramphus aleuticus, a zooplanktivorous seabird inhabiting the variable California Current System, to understand how temporal environmental variability influences population dynamics. 2. We used capture-recapture data from 1986 to 2002 to rank models of interannual variation in survival, breeding propensity, breeding success, and recruitment. 3. All demographic parameters exhibited temporal variability. Interannual variation in survival was best modelled as a nonlinear function of the winter Southern Oscillation Index (SOI). Breeding propensity was best modelled as a threshold function of local sea surface temperature. Breeding success and recruitment were best modelled with year-dependent annual variation. 4. Changes in the SOI force El Ni?o/La Ni?a events, which in turn alter prey availability to seabirds in this system. Demographic responses varied during El Ni?os/La Ni?as. Survival diminished substantially during the 1997-98 El Ni?o event, while breeding propensity was affected during both the 1992 and 1998 El Ni?os. Breeding success was reduced during the 1992, 1993, and 1998 El Ni?os, but was unusually high in 2002. Recruitment was higher at the beginning and end of this time-series. 5. While demographic responses varied interannually, parameter values covaried in a positive fashion, a situation conducive to rapid population change. During the 11 years study period, the Farallon auklet breeding population declined at 6.05 +/- 0.80% (SE) per year, a cumulative decline of 49.7%. This study demonstrates how climate variability has influenced key demographic processes for this diminished marine bird population.  相似文献   

12.
13.
14.
Assessment of future ecosystem risks should account for the relevant uncertainty sources. This means accounting for the joint effects of climate variables and using modelling techniques that allow proper treatment of uncertainties. We investigate the influence of three of the IPCC's scenarios of greenhouse gas emissions (special report on emission scenarios (SRES)) on projections of the future abundance of a bryophyte model species. We also compare the relative importance of uncertainty sources on the population projections. The whole chain global climate model (GCM)-regional climate model-population dynamics model is addressed. The uncertainty depends on both natural- and model-related sources, in particular on GCM uncertainty. Ignoring the uncertainties gives an unwarranted impression of confidence in the results. The most likely population development of the bryophyte Buxbaumia viridis towards the end of this century is negative: even with a low-emission scenario, there is more than a 65 per cent risk for the population to be halved. The conclusion of a population decline is valid for all SRES scenarios investigated. Uncertainties are no longer an obstacle, but a mandatory aspect to include in the viability analysis of populations.  相似文献   

15.
Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio‐economic impacts on ecosystem services, marine fisheries, and fishery‐dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish‐MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%–30% (±12%–17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%–80% (±35%–200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size‐classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.  相似文献   

16.
Habitat conditions mediate the effects of climate, so neighboring populations with differing habitat conditions may differ in their responses to climate change. We have previously observed that juvenile survival in Snake River spring/summer Chinook salmon is strongly correlated with summer temperature in some populations and with fall streamflow in others. Here, we explore potential differential responses of the viability of four of these populations to changes in streamflow and temperature that might result from climate change. First, we linked predicted changes in air temperature and precipitation from several General Circulation Models to a local hydrological model to project streamflow and air temperature under two climate‐change scenarios. Then, we developed a stochastic, density‐dependent life‐cycle model with independent environmental effects in juvenile and ocean stages, and parameterized the model for each population. We found that mean abundance decreased 20–50% and the probability of quasi‐extinction increased dramatically (from 0.1–0.4 to 0.3–0.9) for all populations in both scenarios. Differences between populations were greater in the more moderate climate scenario than in the more extreme, hot/dry scenario. Model results were relatively robust to realistic uncertainty in freshwater survival parameters in all scenarios. Our results demonstrate that detailed population models can usefully incorporate climate‐change predictions, and that global warming poses a direct threat to freshwater stages in these fish, increasing their risk of extinction. Because differences in habitat may contribute to the individualistic population responses we observed, we infer that maintaining habitat diversity will help buffer some species from the impacts of climate change.  相似文献   

17.
Aim Possible effects of current and future climates on boreal vegetation dynamics and carbon (C) cycling were investigated using the CENTURY 4.0 soil process model and a modified version of the FORSKA2 forest patch model. Location Eleven climate station locations distributed along a transect across the boreal zone of central Canada. Methods Both models were driven by detrended long-term monthly climate data. Using a climate change signal derived from the GISS general circulation model (GCM) 2×CO2 equilibrium climate scenario, the output from the two models was then used to compare simulated current and possible future total ecosystem C storage at the climate station locations. Results After allowing for their different underlying structures, comparison of output from both models showed good agreement with local field data under current climate conditions. CENTURY 4.0 was able to reproduce spatial variation in soil and litter C densities satisfactorily but tended to overestimate biomass productivity. FORSKA2 reproduced aboveground biomass productivity and spatially averaged biomass densities relatively well. Under the GISS 2×CO2 scenario, both models generally predicted small increases in aboveground biomass C density for forest and tundra locations, but CENTURY 4.0 predicted greater decreases in soil and litter pools, for overall decreases in ecosystem C storage in the range 16–19%. Main conclusions With some caveats, results imply that effects of increased precipitation (as simulated by the GISS GCM) would more than compensate for any negative effects of increased temperature on forest growth. Increased temperature would also increase decomposition rates of soil and litter organic matter, however, for a net overall decrease in total ecosystem C storage.  相似文献   

18.
Little Penguin (Eudyptula minor) is one of the most ecologically important seabirds in New Zealand and depends strongly on terrestrial ecosystems for nesting, moulting and breeding. Wellington, New Zealand, is one of the world's most important biodiversity hot spots for this species, mostly in confluence with human urban settlements. This species is currently suffering from the local impacts of climate change associated with urbanisation. Two suburbs of Wellington, New Zealand, that are used seasonally by Little Penguin as terrestrial habitat were selected as the study area to address two issues: (i) how local impacts of climate change may affect the population and habitat structure of species in urban coastal zones where land cover change occurs; and (ii) how landscape management practices may help to mitigate the impacts imposed by climate change on the species in such a context. Remote Sensing and Geographical Information Systems techniques were applied to quantify and measure the extent of the prehuman forests and current land cover classes in the study area to reveal the degree to which land cover has changed from predevelopment to the present time. The research shows that land cover change in the study area has been widespread and partly irreversible, particularly in areas covered by the class Built‐up Area. Results reveal that there are still spatial opportunities to safeguard this vulnerable species against the ill effects of climate change through landscape management practices.  相似文献   

19.
Understanding how environmental change affects ecosystem function delivery is of primary importance for fundamental and applied ecology. Current approaches focus on single environmental driver effects on communities, mediated by individual response traits. Data limitations present constraints in scaling up this approach to predict the impacts of multivariate environmental change on ecosystem functioning. We present a more holistic approach to determine ecosystem function resilience, using long‐term monitoring data to analyze the aggregate impact of multiple historic environmental drivers on species' population dynamics. By assessing covariation in population dynamics between pairs of species, we identify which species respond most synchronously to environmental change and allocate species into “response guilds.” We then use “production functions” combining trait data to estimate the relative roles of species to ecosystem functions. We quantify the correlation between response guilds and production functions, assessing the resilience of ecosystem functioning to environmental change, with asynchronous dynamics of species in the same functional guild expected to lead to more stable ecosystem functioning. Testing this method using data for butterflies collected over four decades in the United Kingdom, we find three ecosystem functions (resource provisioning, wildflower pollination, and aesthetic cultural value) appear relatively robust, with functionally important species dispersed across response guilds, suggesting more stable ecosystem functioning. Additionally, by relating genetic distances to response guilds we assess the heritability of responses to environmental change. Our results suggest it may be feasible to infer population responses of butterflies to environmental change based on phylogeny—a useful insight for conservation management of rare species with limited population monitoring data. Our approach holds promise for overcoming the impasse in predicting the responses of ecosystem functions to environmental change. Quantifying co‐varying species' responses to multivariate environmental change should enable us to significantly advance our predictions of ecosystem function resilience and enable proactive ecosystem management.  相似文献   

20.
Human‐induced climate change and ocean acidification (CC‐OA) is changing the physical and biological processes occurring within the marine environment, with poorly understood implications for marine life. Within the aquaculture sector, molluskan culture is a relatively benign method of producing a high‐quality, healthy, and sustainable protein source for the expanding human population. We modeled the vulnerability of global bivalve mariculture to impacts of CC‐OA over the period 2020–2100, under RCP8.5. Vulnerability, assessed at the national level, was dependent on CC‐OA‐related exposure, taxon‐specific sensitivity and adaptive capacity in the sector. Exposure risk increased over time from 2020 to 2100, with ten nations predicted to experience very high exposure to CC‐OA in at least one decade during the period 2020–2100. Predicted high sensitivity in developing countries resulted, primarily, from the cultivation of species that have a narrow habitat tolerance, while in some European nations (France, Ireland, Italy, Portugal, and Spain) high sensitivity was attributable to the relatively high economic value of the shellfish production sector. Predicted adaptive capacity was low in developing countries primarily due to governance issues, while in some developed countries (Denmark, Germany, Iceland, Netherlands, Sweden, and the United Kingdom) it was linked to limited species diversity in the sector. Developing and least developed nations (n = 15) were predicted to have the highest overall vulnerability. Across all nations, 2060 was identified as a tipping point where predicted CC‐OA will be associated with the greatest challenge to shellfish production. However, rapid declines in mollusk production are predicted to occur in the next decade for some nations, notably North Korea. Shellfish culture offers human society a low‐impact source of sustainable protein. This research highlights, on a global scale, the likely extent and nature of the CC‐OA‐related threat to shellfish culture and this sector enabling early‐stage adaption and mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号