首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
嗅觉受体基因的研究进展   总被引:2,自引:0,他引:2  
高一龙  缪勤  张汇东  温海  秦海斌  谢庄 《遗传》2010,32(1):17-24
嗅觉在动物的生命活动中起着重要的作用, 与嗅觉相关的基因主要是嗅觉受体(Olfactory receptor, OR)基因。文章介绍了嗅觉受体基因的结构、表达调控、分布、分子进化及其多态性研究进展, 并讨论了该基因与嗅觉功能和嗅觉障碍的关系。  相似文献   

2.
The rodent olfactory epithelium expresses more than 1000 odorant receptors (ORs) with distinct patterns, yet it is unclear how such patterns are established during development. In the current study, we investigated development of the expression patterns of different ORs in the septal organ, a small patch of olfactory epithelium predominantly expressing nine identified ORs. The presumptive septal organ first appears at about embryonic day 16 (E16) and it completely separates from the main olfactory epithelium (MOE) at about postnatal day 7 (P7). Using in situ hybridization, we quantified the densities of the septal organ neurons labeled by specific RNA probes of the nine abundant OR genes from E16 to postnatal 3 months. The results indicate that olfactory sensory neurons (OSNs) expressing different ORs have asynchronous temporal onsets. For instance, MOR256-17 and MOR236-1 cells are present in the septal organ at E16; however, MOR0-2 cells do not appear until P0. In addition, OSNs expressing different ORs show distinct developmental courses and reach their maximum densities at different stages ranging from E16 (e.g. MOR256-17) to 1 month (e.g. MOR256-3 and MOR235-1). Furthermore, early onset does not correlate with high abundance in adult. This study reveals a dynamic composition of the OSNs expressing different ORs in the developing olfactory epithelium.  相似文献   

3.
Olfactory marker protein (OMP) is a 19-kD acidic protein found throughout the cytoplasm of mature olfactory receptor neurons (ORNs). Its function remains unknown. Following olfactory bulbectomy, the proportion of ORNs mature enough to express OMP declines greatly. However, in the few remaining mature ORNs, it has been observed that the intensity of OMP immunoreactivity (IR) appears to increase over that of ORNs on the unoperated side. We have now investigated this phenomenon quantitatively in rats subjected to unilateral olfactory bulbectomy. Results show that at all postbulbectomy survival periods examined quantitatively (3 days to 6 months), a significant decrease (19–37%) occurs in the transmission of incident light through OMP(+)-ORNs in bulbectomized versus unoperated olfactory epithelium (OE). Further, we also observed a consistent side-to-side difference in OMP IR in control unoperated animals. Possible explanations for these observations and their relation to the still unknown function of OMP are discussed. To test the possibility that OMP might serve a mitogenic role in the OE, recombinant OMP was added to organotypic explant cultures of fetal olfactory mucosa. Addition of OMP resulted in a dose-dependent increase in the density of bromodeoxyuridine-positive cells in the cultures, with a 50% increase occurring at the plateau OMP concentration of 25 nM. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 377–390, 1998  相似文献   

4.
If reproduction impairs an organism's ability to perform other fitness‐related activities, natural selection may favour behavioural adjustments to minimize these conflicts. This is presumably the reason why many animals are anorexic during the breeding season. We studied amphibious sea snakes, a group whose ecology facilitates teasing apart the causal links between reproduction and feeding. In both Laticauda laticaudata and L. saintgironsi in New Caledonia, adult females cease feeding as their eggs develop. The advantages of foregoing feeding do not relate to thermoregulation (because foraging does not entail lower body temperatures), nor are they attributable to physical constraints on abdominal volume (because in a snake's linear body, there is little overlap between the stomach and the oviducts). Instead, female sea kraits appear to cease feeding because their bodily distension impedes locomotor ability, rendering them less effective at foraging and more vulnerable to aquatic predators.  相似文献   

5.
An olfactory receptor (OR) multigene family is responsible for the well-developed sense of smell possessed by terrestrial tetrapods. Mammalian OR genes had diverged greatly in the terrestrial environment after the fish-tetrapod split, indicating their importance to land habitation. In this study, we analysed OR genes of marine tetrapods (minke whale Balaenoptera acutorostrata, dwarf sperm whale Kogia sima, Dall's porpoise Phocoenoides dalli, Steller's sea lion Eumetopias jubatus and loggerhead sea turtle Caretta caretta) and revealed that the pseudogene proportions of OR gene repertoires in whales were significantly higher than those in their terrestrial relative cattle and also in sea lion and sea turtle. On the other hand, the pseudogene proportion of OR sequences in sea lion was not significantly higher compared with that in their terrestrial relative (dog). It indicates that secondary perfectly adapted marine vertebrates (cetaceans) have lost large amount of their OR genes, whereas secondary-semi-adapted marine vertebrates (sea lions and sea turtles) still have maintained their OR genes, reflecting the importance of terrestrial environment for these animals.  相似文献   

6.
7.
Recent biochemical evidence indicates that protein kinase C (PKC) and G-protein-coupled receptor kinases (GRKs) are involved in olfactory signal termination and desensitization. The polymerase chain reaction (PCR) was used to investigate the expression of PKC and GRK genes in olfactory tissue and in isolated olfactory receptor neurons from channel catfish (Ictalurus punctatus). Sequence analysis of cloned PKC PCR products showed that the α, β, δ, ϵ, and τ isotypes were expressed in olfactory tissue. Sequence analysis of PCR products obtained from isolated olfactory receptor neurons showed that PKCβ and PKCδ were expressed in the receptor cells. A 600-bp GRK PCR product was obtained from isolated olfactory neurons that shared 86% and 92% amino acid sequence identity to the mammalian β-adrenergic receptor kinase gene products βARK1 and βARK2, respectively. Go6976, a specific inhibitor of calcium-regulated PKC activity, completely inhibited odorant-stimulated PKC activity in isolated olfactory cilia. This result suggested that odorant-stimulated PKC activity is mediated by the calcium-sensitive PKCβ isotype. Taken together, these results are consistent with the conclusion that PKCβ and βARK mediate odorant receptor phosphorylation and olfactory signal termination. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 387–394, 1997  相似文献   

8.
《Current biology : CB》2021,31(15):3382-3390.e7
  1. Download : Download high-res image (180KB)
  2. Download : Download full-size image
  相似文献   

9.
The role of laminin, an extracellular matrix molecule believed to be involved in axon extension, was explored in the outgrowth of olfactory receptor cells and therefore in the maintenance of organization in the olfactory pathway. First, immunocytochemistry was used to examine laminin expression in the olfactory nerve and bulb during development. Laminin immunoreactivity was high in the olfactory nerve and glomerular layers. Although it declined in intensity, laminin expression continued in the nerve and in single glomeruli of adults. Second, the influence of laminin on neurite outgrowth was examined in vitro using olfactory receptor cells harvested from E14 rat embryos. We developed an in vitro assay to quantify the substrate preference of outgrowing neurites. Cells were cultured for 48 h on coverslips coated with either poly-L-lysine alone, or poly-L-lysine overlaid with laminin. On laminin-coated regions of coverslips, the primary neurites of olfactory receptor cells were 52% longer than on the poly-L-lysine control substrates. In addition, the direction of the neurite outgrowth was influenced by laminin. Fifty-six percent of all receptor cells located in a defined area surrounding a laminin zone extended neurites onto laminin. In contrast, only 7% of all receptor cells located in the corresponding laminin zone extended a neurite onto poly-L-lysine. In summary, these data suggest that laminin provides a favorable substrate for the extension of the primary neurite from olfactory receptor cells and the direction of their extension. Therefore, laminin may be a factor underlying continuous olfactory receptor cell axon outgrowth and its pathfinding in the olfactory system. © 1997 John Wiley & Sons, Inc. J Neurobiol 00: 32: 298–310, 1997  相似文献   

10.
We investigated morphological adaptations to aquatic life within animals that exhibit a structurally simple, elongate body form, i.e., snakes. This linear body plan should impose different biomechanical constraints than the classical streamlined body shape associated with propulsion by fins, feet, or wings. Our measurements of general body shape of terrestrial, amphibious, and marine snakes (all from the same phylogenetic lineage, the Elapidae) show that seasnakes display specialized morphological attributes for life in water. Most notably, the cross‐sectional body shape is circular in terrestrial snakes but dorso‐ventrally elongated in seasnakes (due to a prominent ventral keel); amphibious species (sea kraits) exhibit an intermediate shape. The tail of amphibious and marine species (a major propulsive structure during swimming) is higher and thinner than in terrestrial snakes (i.e., paddle‐shaped) but shorter relative to body length. The evolution of a laterally compressed shape has been achieved by an increase in body height rather than a decrease in body width, possibly reflecting selection for more effective propulsive thrust, and for an ability to maintain hydrodynamic efficiency despite the minor bodily distension inevitably caused by prey items and developing offspring. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc  相似文献   

11.
Abstract Complex sociality is widespread in lizards, but the difficulties of directly observing social interactions in free‐ranging snakes have precluded such studies for most snake species. However, a type of data already available from mark‐recapture studies (dates of capture and recapture of individually marked animals) can reveal social substructure within snake populations. If individuals associate with each other in social groups, we expect synchrony in the dates of capture and recapture of those animals. A field study of turtle‐headed sea snakes (Emydocephalus annulatus) in New Caledonia reveals exactly this phenomenon. For example, animals that were captured on the same day in one year often were recaptured on the same day the following year. Analysis rejects non‐social interpretations of these data (such as spatial‐temporal confounding in sampling, intrapopulation heterogeneity in cues for activity), suggesting instead that many individual sea snakes belong to ‘social’ groups that consistently move about together. The phenomenon of capture synchrony during mark‐recapture studies can provide new insights into the occurrence and correlates of cryptic social aggregations.  相似文献   

12.
Different odorants are recognized by different combinations of G protein-coupled olfactory receptors, and thereby, odor identity is determined by a combinatorial receptor code for each odorant. We recently demonstrated that odorants appeared to compete for receptor sites to act as an agonist or an antagonist. Therefore, in natural circumstances where we always perceive a mixture of various odorants, olfactory receptor antagonism between odorants may result in a receptor code for the mixture that cannot be predicted from the codes for its individual components. Here we show that stored isoeugenol has an antagonistic effect on a mouse olfactory receptor, mOR-EG. However, freshly purified isoeugenol did not have an inhibitory effect. Instead, an isoeugenol derivative produced during storage turned out to be a potent competitive antagonist of mOR-EG. Structural analysis revealed that this derivative is an oxidatively dimerized isoeugenol that naturally occurs by oxidative reaction. The current study indicates that as odorants age, they decompose or react with other odorants, which in turn affects responsiveness of an olfactory receptor(s).  相似文献   

13.
Multiple trials failed to express significant amounts of olfactory receptors in heterologous cells as they are typically retained in the endoplasmic reticulum (ER). Evidence is accumulating that cell-type-specific accessory proteins regulate the folding of olfactory receptors, their exit from the ER, and the trafficking to the plasma membrane of the olfactory cilia where the receptors gain access to odorants. We found Hsc70t, a testis-enriched variant of the Hsp70 family of heat shock proteins which is specifically expressed in post-meiotic germ cells, in the olfactory epithelium of mouse and human. Cotransfected HEK293 cells with Hsc70t and different green fluorescent protein-tagged odorant receptors (ORs) from mouse and man showed a significantly enhanced OR expression. Hsc70t expression also changed the amount of cells functionally expressing olfactory receptors at the cell surface as the number of cells responding to odorants in Ca2+-imaging experiments significantly increased. Our results show that Hsc70t helps expression of ORs in heterologous cell systems and helped the characterization of an "orphan" human olfactory receptor.  相似文献   

14.
天牛成虫信息素及嗅觉感受机制研究进展   总被引:15,自引:0,他引:15  
评述了天牛成虫信息素及嗅觉感受机制的研究进展。天牛雌、雄成虫均可释放性信息素,迄今已对31种天牛的性信息素进行了研究,其中完成组分鉴定的有13种。天牛性信息素包括长距离、短距离和接触性信息素3种类型。天牛性信息素存在变异现象,同种天牛分布在不同地区,其性信息素组分之间存在差异。触角是天牛感受性信息素的主要器官,也是判别成虫通讯方式的形态指标,性信息素发达的种类其触角常具显著的性二型现象。天牛利用寄主信息素(如萜烯类、醇类和酯类)寻找寄主。性信息素和寄主信息素在林间复合使用可提高诱捕率。天牛信息素还包括异种信息素、忌避信息素和产卵干扰素,能够提高天牛寄主定位效率。天牛触角嗅觉感受的神经细胞(RNs)有3类,气味信息经神经细胞群传输至中枢神经系统,神经信号按标记路线或交叉纤维样式输导。天牛气味结合蛋白(OBP)方面的研究尚未见报道。  相似文献   

15.
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed "InsP3 odorants"). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells ( approximately 2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.  相似文献   

16.
The sea urchin egg receptor for sperm is a 350 kDa glycoprotein containing a large extracellular domain that contains the sperm binding site, a transmembrane domain and a short COOH- terminal intracellular domain. During oogenesis, the receptor protein is first detected in Golgi-associated vesicles and cortical granules. Not until the egg is mature does the receptor appear on the cell surface; at this stage the intact receptor is found in approximately equal quantities on the egg cell surface and in cortical granules. As a potentially unique type of receptor, we were interested in its fate following fertilization. Several techniques have revealed that, following sperm binding, the amount of receptor markedly decreases. Using western blot analysis as well as direct measurement of the receptor protein, it was found that the membrane-bound form of the receptor rapidly disappeared following sperm binding to the egg, with only 3% of the receptor remaining after 30 s. Analysis by immupoelectron microscopy revealed that 30 s after sperm binding, 30% of the initial level of receptor was present. This remaining 30% was found mostly within the perivitelline space formed by the raised fertilization envelope. The disparity between these two sets of results (i.e. 3 vs 30%) is most likely accounted for by the exocytosis of receptor molecules from cortical granules; this fraction of the receptor would have been lost during isolation of the membrane-bound form of the receptor. Thus, unlike other cell surface receptors, the sea urchin egg receptor for sperm is not endocytosed and recycled following ligand binding. Rather, it disappears, presumably as a result of proteolysis. Transiently, the cortical granule form of the receptor is found released into the perivitelline space where it may bind to sperm and thereby prevent polyspermy. Despite the apparent secretion of this form of the receptor, experiments with antibodies to the extracellular and intracellular domains indicate that the receptors in cortical granules and in the plasmic membrane are similar, if not identical.  相似文献   

17.
《Cell metabolism》2022,34(2):240-255.e10
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
  相似文献   

18.
For the development of a biomimetic odor-sensing system, we investigated the effects of replacing the N-terminus of an olfactory receptor (OR) on its functional expression in the budding yeast, Saccharomyces cerevisiae. Using the mouse olfactory receptor OR226 (mOR226), three types of chimeric ORs were constructed by replacing N-terminal regions of mOR226 with the corresponding regions of the rat I7 receptor, which is known to be functionally expressed in yeast. The replacement of the N-terminal region of mOR226 dramatically affected the expression and localization of the receptor and improved the sensing ability of the yeast cells for the odorant. Furthermore, the replacement of the endogenous yeast G-protein α subunit (Gpa1) by the OR-specific G(olf) drastically elevated the odorant-sensing ability of the yeast cells and caused the cells to display a dose-dependent responsiveness to the odorant. Because of the suitability of yeast cells for screening large-scale libraries, the strategy presented here would be useful for the establishment of advanced biomimetic odor-sensing systems.  相似文献   

19.
昆虫非典型嗅觉受体Orco的功能和分子结构研究进展   总被引:2,自引:0,他引:2  
尹淑艳  周成刚  刘庆信 《昆虫学报》2013,56(10):1208-1216
嗅觉受体是参与昆虫嗅觉识别过程的一类重要蛋白。在昆虫的众多嗅觉受体中, 有一类受体明显不同于其他受体, 被称为Orco。该受体基因在不同昆虫种间高度保守, 且表达广泛。Orco在昆虫嗅觉识别过程中发挥关键作用。采用基因突变或RNAi等技术使Orco基因沉默后, 昆虫会出现严重的嗅觉缺陷, 但Orco本身不与气味配体结合, 它与传统嗅觉受体形成复合体Or-Orco, 促进传统嗅觉受体在神经元树突膜上的定位并维持其稳定性, 提高传统嗅觉受体对气味反应的效率。昆虫嗅觉受体的结构与脊椎动物的G蛋白偶联受体相似, 均有7个跨膜区, 但二者的膜拓扑结构相反, 昆虫嗅觉受体的N末端位于细胞质膜内, C末端在细胞质膜外, Orco与传统嗅觉受体通过保守的C末端区域相互作用形成一种新型的配体门控离子通道--Or-Orco复合体。阐明Orco在昆虫嗅觉识别中的功能机制, 可为开创基于昆虫嗅觉行为干扰的新的害虫防治措施提供基础。  相似文献   

20.
Summary Olfactory receptor neurons enzymatically dissociated from channel catfish olfactory epithelium were depolarized transiently following dialysis of IP3 or cAMP (added to the patch pipette) into the cytoplasm. Voltage and current responses to IP3 were blocked by ruthenium red, a blocker of an IP3-gated Ca2+-release channel in sarcoplasmic reticulum. In contrast, the responses to cAMP were not blocked by extracellularly applied ruthenium red, nor by l-cis-diltiazem or amiloride and two of its derivatives. The current elicited by cytoplasmic IP3 in neurons under voltage clamp displayed a voltage dependence different from that of the cAMP response which showed marked outward rectification. A sustained depolarization was caused by increased cytoplasmic IP3 or cAMP when the buffering capacity for Ca2+ of the pipette solution was increased, when extracellular Ca2+ was removed or after addition of 20–200 nm charibdotoxin to the bathing solution, indicating that the repolarization was caused by an increase in [Ca i ] that opened Ca2+-activated K+ channels. The results suggest that different conductances modulated by either IP3 or cAMP are involved in mediating olfactory transduction in catfish olfactory receptor neurons and that Ca2+-activated K+ channels contribute to the termination of the IP3 and cAMP responses.Abbreviations ATP adenosine 5-triphosphate - BAPTA (bis-(o-aminophenoxy)-ethane-N-N-N-N)-tetraacetic acid - cAMP adenosine cyclic 3,5-monophosphate - cGMP guanosine cyclic 3,5-monophosphate - CTX charybdotoxin - DCB 3,4-dichlorobenzamil - EDTA ethylenediaminetetraacetic acid - EGTA ethylenglycol-bis-(b-aminoethyl)-N-N-N-N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - IP3 inositol-1,4,5-triphosphate - NMDG N-methyl-d-glucamine We would like to thank the Tanabe Seiyaku Co., Ltd., for their gift of l-cis-diltiazem. This work was supported by National Institutes of Health grants DC00566 and BRSG S07RR05825.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号