首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human thrombospondin 1 (hTSP-1) is a matricellular glycoprotein facilitating bacterial adherence to and invasion into eukaryotic cells. However, the bacterial adhesin(s) remain elusive. In this study, we show a dose-dependent binding of soluble hTSP-1 to Gram-positive but not Gram-negative bacteria. Diminished binding of soluble hTSP-1 to proteolytically pretreated staphylococci suggested a proteinaceous nature of potential bacterial adhesin(s) for hTSP-1. A combination of separation of staphylococcal surface proteins by two-dimensional gel electrophoresis with a ligand overlay assay with hTSP-1 and identification of the target protein by mass spectrometry revealed the major staphylococcal autolysin Atl as a bacterial binding protein for hTSP-1. Binding experiments with heterologously expressed repeats of the AtlE amidase from Staphylococcus epidermidis suggest that the repeating sequences (R1ab-R2ab) of the N-acetyl-muramoyl-l-alanine amidase of Atl are essential for binding of hTSP-1. Atl has also been identified previously as a staphylococcal vitronectin (Vn)-binding protein. Similar to the interaction with hTSP-1, the R1ab-R2ab repeats of Atl are shown here to be crucial for the interaction of Atl with the complement inhibition and matrix protein Vn. Competition assays with hTSP-1 and Vn revealed the R1ab-R2ab repeats of AtlE as the common binding domain for both host proteins. Furthermore, Vn competes with hTSP-1 for binding to Atl repeats and vice versa. In conclusion, this study identifies the Atl repeats as bacterial adhesive structures interacting with the human glycoproteins hTSP-1 and Vn. Finally, this study provides insight into the molecular interplay between hTSP-1 and Vn, respectively, and a bacterial autolysin.  相似文献   

2.
The cell wall of Gram‐positive bacteria has been shown to mediate environmental stress tolerance, antibiotic susceptibility, host immune evasion and overall virulence. The majority of these traits have been demonstrated for the well‐studied system of wall teichoic acid (WTA) synthesis, a common cell wall polysaccharide among Gram‐positive organisms. Streptococcus mutans, a Gram‐positive odontopathogen that contributes to the enamel‐destructive disease dental caries, lacks the capabilities to generate WTA. Instead, the cell wall of S. mutans is highly decorated with rhamnose‐glucose polysaccharides (RGP), for which functional roles are poorly defined. Here, we demonstrate that the RGP has a distinct role in protecting S. mutans from a variety of stress conditions pertinent to pathogenic capability. Mutant strains with disrupted RGP synthesis failed to properly localize cell division complexes, suffered from aberrant septum formation and exhibited enhanced cellular autolysis. Surprisingly, mutant strains of S. mutans with impairment in RGP side chain modification grew into elongated chains and also failed to properly localize the presumed cell wall hydrolase, GbpB. Our results indicate that fully mature RGP has distinct protective and morphogenic roles for S. mutans, and these structures are functionally homologous to the WTA of other Gram‐positive bacteria.  相似文献   

3.
The bifunctional major autolysin Atl plays a key role in staphylococcal cell separation. Processing of Atl yields catalytically active amidase (AM) and glucosaminidase (GL) domains that are each fused to repeating units. The two repeats of AM (R1 and R2) target the enzyme to the septum, where it cleaves murein between dividing cells. We have determined the crystal structure of R2, which reveals that each repeat folds into two half-open β-barrel subunits. We further demonstrate that lipoteichoic acid serves as a receptor for the repeats and that this interaction depends on conserved surfaces in each subunit. Small-angle X-ray scattering of the mature amidase reveals the presence of flexible linkers separating the AM, R1, and R2 units. Different levels of flexibility for each linker provide mechanistic insights into the conformational dynamics of the full-length protein and the roles of its components in cell wall association and catalysis. Our analysis supports a model in which the repeats direct the catalytic AM domain to the septum, where it can optimally perform the final step of cell division.  相似文献   

4.
Wall teichoic acid (WTA) comprises a class of glycopolymers covalently attached to the peptidoglycan of gram positive bacteria. In Listeria monocytogenes, mutations that prevent addition of certain WTA decorating sugars are attenuating. However, the steps required for decoration and the pathogenic process interrupted are not well described. We systematically examined the requirement for WTA galactosylation in a mouse oral‐virulent strain by first creating mutations in four genes whose products conferred resistance to a WTA‐binding bacteriophage. WTA biochemical and structural studies indicated that galactosylated WTA was directly required for bacteriophage adsorption and that mutant WTA lacked appreciable galactose in all except one mutant – which retained a level ca. 7% of the parent. All mutants were profoundly attenuated in orally infected mice and were impaired in cell‐to‐cell spread in vitro. Confocal microscopy of cytosolic mutants revealed that all expressed ActA on their cell surface and formed actin tails with a frequency similar to the parent. However, the mutant tails were significantly shorter – suggesting a defect in actin based motility. Roles for the gene products in WTA galactosylation are proposed. Identification and interruption of WTA decoration pathways may provide a general strategy to discover non‐antibiotic therapeutics for gram positive infections. © 2016 John Wiley & Sons Ltd  相似文献   

5.
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a growing health threat worldwide. Efforts to identify novel antibodies that target S. aureus cell surface antigens are a promising direction in the development of antibiotics that can halt MRSA infection. We biochemically and structurally characterized three patient-derived MRSA-targeting antibodies that bind to wall teichoic acid (WTA), which is a polyanionic surface glycopolymer. In S. aureus, WTA exists in both α- and β-forms, based on the stereochemistry of attachment of a N-acetylglucosamine residue to the repeating phosphoribitol sugar unit. We identified a panel of antibodies cloned from human patients that specifically recognize the α or β form of WTA, and can bind with high affinity to pathogenic wild-type strains of S. aureus bacteria. To investigate how the β-WTA specific antibodies interact with their target epitope, we determined the X-ray crystal structures of the three β-WTA specific antibodies, 4462, 4497, and 6078 (Protein Data Bank IDs 6DWI, 6DWA, and 6DW2, respectively), bound to a synthetic WTA epitope. These structures reveal that all three of these antibodies, while utilizing distinct antibody complementarity-determining region sequences and conformations to interact with β-WTA, fulfill two recognition principles: binding to the β-GlcNAc pyranose core and triangulation of WTA phosphate residues with polar contacts. These studies reveal the molecular basis for targeting a unique S. aureus cell surface epitope and highlight the power of human patient-based antibody discovery techniques for finding novel pathogen-targeting therapeutics.  相似文献   

6.
Listeria monocytogenes is a Gram-positive, intracellular pathogen harboring the surface-associated virulence factor InlB, which enables entry into certain host cells. Structurally diverse wall teichoic acids (WTAs), which can also be differentially glycosylated, determine the antigenic basis of the various Listeria serovars. WTAs have many physiological functions; they can serve as receptors for bacteriophages, and provide a substrate for binding of surface proteins such as InlB. In contrast, the membrane-anchored lipoteichoic acids (LTAs) do not show significant variation and do not contribute to serovar determination. It was previously demonstrated that surface-associated InlB non-covalently adheres to both WTA and LTA, mediating its retention on the cell wall. Here, we demonstrate that in a highly virulent serovar 4b strain, two genes gtlB and gttB are responsible for galactosylation of LTA and WTA respectively. We evaluated the InlB surface retention in mutants lacking each of these two genes, and found that only galactosylated WTA is required for InlB surface presentation and function, cellular invasiveness and phage adsorption, while galactosylated LTA plays no role thereof. Our findings demonstrate that a simple pathogen-defining serovar antigen, that mediates bacteriophage susceptibility, is necessary and sufficient to sustain the function of an important virulence factor.  相似文献   

7.
The C-terminal cell wall binding domains (CBDs) of phage endolysins direct the enzymes to their binding ligands on the bacterial cell wall with high affinity and specificity. The Listeria monocytogenes Ply118, Ply511, and PlyP40 endolysins feature related CBDs which recognize the directly cross-linked peptidoglycan backbone structure of Listeria. However, decoration with fluorescently labeled CBDs primarily occurs at the poles and septal regions of the rod-shaped cells. To elucidate the potential role of secondary cell wall-associated carbohydrates such as the abundant wall teichoic acid (WTA) on this phenomenon, we investigated CBD binding using L. monocytogenes serovar 1/2 and 4 cells deficient in WTA. Mutants were obtained by deletion of two redundant tagO homologues, whose products catalyze synthesis of the WTA linkage unit. While inactivation of either tagO1 (EGDe lmo0959) or tagO2 (EGDe lmo2519) alone did not affect WTA content, removal of both alleles following conditional complementation yielded WTA-deficient Listeria cells. Substitution of tagO from an isopropyl-β-d-thiogalactopyranoside-inducible single-copy integration vector restored the original phenotype. Although WTA-deficient cells are viable, they featured severe growth inhibition and an unusual coccoid morphology. In contrast to CBDs from other Listeria phage endolysins which directly utilize WTA as binding ligand, the data presented here show that WTAs are not required for attachment of CBD118, CBD511, and CBDP40. Instead, lack of the cell wall polymers enables unrestricted spatial access of CBDs to the cell wall surface, indicating that the abundant WTA can negatively regulate sidewall localization of the cell wall binding domains.  相似文献   

8.
Summary Liquoid (polyanethole sulfonate) was neither capable of influencing the growth nor the viability of staphylococci. But liquoid induced a suppression of the activity of different autolytic wall systems of normally growing staphylococci, i.e., autolysins which participate in cross wall separation as well as autolysins which are responsible for cell wall turnover. Additionally, the lysostaphin-induced wall disintegration of staphylococci was inhibited by liquoid.However, no indication could be found for a direct inhibition of lytic wall enzymes by liquoid; rather an interaction of liquoid with the target structure for the autolytic wall enzymes, the cell wall itself, was postulated. On the basis of the experimental data with the teichoic acid- mutant S. aureus 52A5 the sites of wall teichoic acid were supposed to be an important target for the binding of liquoid to the staphylococcal cell wall.  相似文献   

9.
The binding of fluorescein isothiocyanate (FITC) conjugated lectins to gametes of Aglaothamnion byssoides Itono during the fertilization was studied by the use of confocal microscope. The physiological effects of lectins and carbohydrates on gamete binding were also examined. Three lectins, concanavalin A (ConA), Soybean agglutinin (SBA) and wheat germ agglutinin (WGA) bound to the surface of spermatia, but each lectin labeled different region of the spermatium. SBA bound only to the spermatial appendages but ConA bound to the whole spermatial surface except spermatial appendages. WGA labeled narrow region which connects spermatial body and appendages. During fertilization, ConA and WGA specific substances on the spermatial surface moved towards the area contacting with trichogyne and accumulated on the surface of fertilization canal. Spermatial binding to trichogynes was inhibited by pre‐incubation of spermatia with SBA, while trichogyne receptors were blocked by the complementary carbohydrate, N‐acetyl‐D‐galactosamine. WGA and its complementary carbohydrate had little effect on gamete binding. For searching the step of sexual isolation, crossing experiment was performed between Aglaothamnion byssoides and twelve other red algal species. Results showed that the gamete recognition was genus‐specific: the gametes bound freely with their partners of the same genus. When two species from same genus were crossed, sexual isolation occurs gradually during the fertilization process. Therefore, sexual isolation in red algae appears to be determined by multi‐step process and gamete binding is the initial step.  相似文献   

10.
Activity of the major staphylococcal autolysin Atl   总被引:1,自引:0,他引:1  
The major autolysin of Staphylococcus aureus (AtlA) and of Staphylococcus epidermidis (AtlE) are well-studied enzymes. Here we created an atlA deletion mutant in S. aureus that formed large cell clusters and was biofilm-negative. In electron micrographs, the mutant cells were distinguished by rough outer cell surface. The mutant could be complemented using the atlE gene from S. epidermidis. To study the role of the repetitive sequences of atlE, we expressed in Escherichia coli the amidase domain encoded by the gene, carrying no repeat regions (amiE) or two repeat regions (amiE-R1,2), or the three repeat regions alone (R1,2,3) as N-terminal His-tag fusion proteins. Only slight differences in the cell wall lytic activity between AmiE and AmiE-R1,2 were observed. The repetitive sequences exhibit a good binding affinity to isolated peptidoglycan and might contribute to the targeting of the amidase to the substrate. AmiE and AmiE-R1,2 have a broad substrate specificity as shown by similar activities with peptidoglycan lacking wall teichoic acid, O-acetylation, or both. As the amidase activity of AtlA and AtlE has not been proved biochemically, we used purified AmiE-R1,2 to determine the exact peptidoglycan cleavage site. We provide the first evidence that the amidase indeed cleaves the amide bond between N-acetyl muramic acid and L-alanine.  相似文献   

11.
The autolytic cell wall hydrolase of Staphylococcus aureus, Atl, contains three highly cationic repeats in the central region of the amino acid sequence, and the repeats are presumed to have the role of binding the enzyme to some components on the cell surface. To explain the possible function of the repeats, we synthesized a number of 10- to 30-mer oligopeptides based on the Atl amino acid sequence (Thr432-Lys610) containing repeat 1, and examined their effects on the autolysis of S. aureus cells. When the peptides were added to a cell suspension of S. aureus under low ionic strength conditions, five peptides, A10, A11, A14, A16 and B9, showed immediate increases in optical density (OD) of the cell suspension accompanied by decreases in viable cell counts. After the immediate increases, the ODs for A10 and A14 changed little in the first 2 hr. In contrast, the ODs for A11 and A16 decreased rapidly. When peptide A10 was added to suspensions of heat-killed whole cells, crude cell walls and a crude peptidoglycan preparation, their ODs were increased approximately 2-fold. In contrast, the OD was not increased when the peptide was added to a suspension of pure peptidoglycan from which anionic polymers had been removed. Light microscopic and transmission electron microscopic study showed that A10 and A14 inhibited autolysis and that A11 and A16 induced autolysis earlier than the control. These results suggest strongly that the peptides adsorb to and precipitate on the anionic cell surface polymers such as teichoic acid and lipoteichoic acid via ionic interaction. The effects of peptides on the autolysis may be the results of the modification of S. aureus autolysin activities. These peptides, especially the 10-mer peptide B9 (PGTKLYTVPW) that represents the C-terminal half of A10 and N-terminal half of A11, may be important segments for Atl to bind to the cell surface.  相似文献   

12.
13.
Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell‐shape determination. Most LytM‐like proteins that have been structurally and/or biochemically characterized are metallo‐endopeptidases that cleave cross‐links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active‐site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo‐endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.  相似文献   

14.
Listeria monocytogenes is an opportunistic Gram-positive bacterial pathogen responsible for listeriosis, a human foodborne disease. Its cell wall is densely decorated with wall teichoic acids (WTAs), a class of anionic glycopolymers that play key roles in bacterial physiology, including protection against the activity of antimicrobial peptides (AMPs). In other Gram-positive pathogens, WTA modification by amine-containing groups such as D-alanine was largely correlated with resistance to AMPs. However, in L. monocytogenes, where WTA modification is achieved solely via glycosylation, WTA-associated mechanisms of AMP resistance were unknown. Here, we show that the L-rhamnosylation of L. monocytogenes WTAs relies not only on the rmlACBD locus, which encodes the biosynthetic pathway for L-rhamnose, but also on rmlT encoding a putative rhamnosyltransferase. We demonstrate that this WTA tailoring mechanism promotes resistance to AMPs, unveiling a novel link between WTA glycosylation and bacterial resistance to host defense peptides. Using in vitro binding assays, fluorescence-based techniques and electron microscopy, we show that the presence of L-rhamnosylated WTAs at the surface of L. monocytogenes delays the crossing of the cell wall by AMPs and postpones their contact with the listerial membrane. We propose that WTA L-rhamnosylation promotes L. monocytogenes survival by decreasing the cell wall permeability to AMPs, thus hindering their access and detrimental interaction with the plasma membrane. Strikingly, we reveal a key contribution of WTA L-rhamnosylation for L. monocytogenes virulence in a mouse model of infection.  相似文献   

15.
T Baba  O Schneewind 《The EMBO journal》1998,17(16):4639-4646
Staphylococcus aureus secretes autolysin (Atl) to complete cell division by hydrolyzing its thick cell wall layer at a designated site, known as the equatorial surface ring. Secreted pro-Atl (1256 amino acids) is cleaved at residues 198 and 775 to generate a pro-peptide, amidase and glucosaminidase, respectively. Here we examined the mechanism that directs amidase and glucosaminidase to the cell division site on the staphylococcal surface. Targeting of pro-Atl to the cell surface occurred prior to its proteolytic processing. Three repeat domains (R1, R2 and R3) located at the center of pro-Atl are necessary and sufficient for the targeting of reporter proteins to the equatorial surface ring. Pro-Atl cleavage at residue 775 separates the polypeptide such that R1 and R2 are linked to the C-terminus of amidase, whereas R3 is located at the N-terminus of glucosaminidase. Thus, it appears that the repeat domains direct pro-Atl, amidase and glucosaminidase to a specific receptor at the equatorial surface ring of staphylococci, thereby allowing localized peptidoglycan hydrolysis and separation of the dividing cells.  相似文献   

16.
Bacteriophages (phages) are the most abundant entities in nature, yet little is known about their capacity to acquire new hosts and invade new niches. By exploiting the Gram‐positive soil bacterium Bacillus subtilis (B. subtilis) and its lytic phage SPO1 as a model, we followed the coevolution of bacteria and phages. After infection, phage‐resistant bacteria were readily isolated. These bacteria were defective in production of glycosylated wall teichoic acid (WTA) polymers that served as SPO1 receptor. Subsequently, a SPO1 mutant phage that could infect the resistant bacteria evolved. The emerging phage contained mutations in two genes, encoding the baseplate and fibers required for host attachment. Remarkably, the mutant phage gained the capacity to infect non‐host Bacillus species that are not infected by the wild‐type phage. We provide evidence that the evolved phage lost its dependency on the species‐specific glycosylation pattern of WTA polymers. Instead, the mutant phage gained the capacity to directly adhere to the WTA backbone, conserved among different species, thereby crossing the species barrier.  相似文献   

17.
The changes of cell surface carbohydrates were examined with FITC (fluorescein isothiocyanate)‐labeled lectins during the conjugation process of the green alga Zygnema cruciatum. The Ulex europaeus agglutinin (UEA)‐specific materials were detected consistently on the surface of vegetative cells, but were absent on the surface of protruding papillae or conjugation tube. The tips of male and female papillae were labeled with soybean agglutinin (SBA) and peanut agglutinin (PNA) during conjugation. The SBA‐ and PNA‐specific materials appeared first at the tip of male papillae and began to accumulate on the surface of female papillae. No labeling of these lectins was detected on the surface of vegetative filaments throughout the conjugation process. FITC‐ConA (Concanavalin A) and FITC‐RCA (Ricinus communis agglutinin) did not label the vegetative filaments of Z. cruciatum, but a trace labeling of these lectins was observed on the surface of some swollen papillae occasionally. Blocking experiments with various lectins showed that these SBA‐ and PNA‐specific glycoconjugates might be involved in the signaling between male and female papillae.  相似文献   

18.
The physiological function of cell wall amidases has been investigated in several proteobacterial species. In all cases, they have been implicated in the cleavage of cell wall material synthesized by the cytokinetic ring. Although typically non‐essential, this activity is critical for daughter cell separation and outer membrane invagination during division. In Escherichia coli, proteins with LytM domains also participate in cell separation by stimulating amidase activity. Here, we investigated the function of amidases and LytM proteins in the opportunistic pathogen Pseudomonas aeruginosa. In agreement with studies in other organisms, PaAmiB and three LytM proteins were found to play crucial roles in P. aeruginosa cell separation, envelope integrity and antibiotic resistance. Importantly, the phenotype of amidase‐defective P. aeruginosa cells also differed in informative ways from the E. coli paradigm; PaAmiB was found to be essential for viability and the successful completion of cell constriction. Our results thus reveal a key role for amidase activity in cytokinetic ring contraction. Furthermore, we show that the essential function of PaAmiB can be bypassed in mutants activated for a Cpx‐like envelope stress response, suggesting that this signaling system may elicit the repair of division machinery defects in addition to general envelope damage.  相似文献   

19.
The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently coupled to PG and is known as wall teichoic acid (WTA). Recently, PG insertion/degradation over the lateral wall has been shown to occur in a helical pattern. However, the spatial organization of WTA assembly and its relationship with cell shape and PG assembly are largely unknown. We have characterized the localization of green fluorescent protein fusions to proteins involved in several steps of WTA synthesis in B. subtilis: TagB, -F, -G, -H, and -O. All of these localized similarly to the inner side of the cytoplasmic membrane, in a pattern strikingly similar to that displayed by probes of nascent PG. Helix-like localization patterns are often attributable to the morphogenic cytoskeletal proteins of the MreB family. However, localization of the Tag proteins did not appear to be substantially affected by single disruption of any of the three MreB homologues of B. subtilis. Bacterial and yeast two-hybrid experiments revealed a complex network of interactions involving TagA, -B, -E, -F, -G, -H, and -O and the cell shape determinants MreC and MreD (encoded by the mreBCD operon and presumably involved in the spatial organization of PG synthesis). Taken together, our results suggest that, in B. subtilis at least, the synthesis and export of WTA precursors are mediated by a large multienzyme complex that may be associated with the PG-synthesizing machinery.  相似文献   

20.
Teichoic acids (TAs) are the most abundant glycopolymers in the cell wall of Listeria, an opportunistic Gram-positive pathogen that causes severe foodborne infections. Two different structural classes of Listeria TA exist: the polyribitolphosphate-based wall teichoic acid (WTA) that is covalently anchored to the peptidoglycan, and the polyglycerolphosphate-based lipoteichoic acid (LTA) that is tethered to the cytoplasmic membrane. While TA polymers govern many important physiological processes, the diverse glycosylation patterns of WTA result in a high degree of surface variation across the species and serovars of Listeria, which in turn bestows varying effects on fitness, biofilm formation, bacteriophage susceptibility and virulence. We review the advances made over the past two decades, and our current understanding of the relationship between TA structure and function. We describe the various types of TA that have been structurally determined to date, and discuss the genetic determinants known to be involved in TA glycosylation. We elaborate on surface proteins functionally related to TA decoration, as well as the molecular and analytical tools used to probe TAs. We anticipate that the growing knowledge of the Listeria surface chemistry will also be exploited to develop novel diagnostic and therapeutic strategies for this pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号