首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species‐averaged values with individual‐based estimates which allow species to potentially occupy multiple size classes. For individual‐based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species‐based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual‐based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species‐based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic equivalence.  相似文献   

2.
Colony size can affect individual- and colony-level behavioral and physiological traits in social insects. Changes in behavior and physiology in response to colony growth and development can affect productivity and fitness. Here, we used respirometry to study the relationship between colony size and colony energy consumption in Temnothorax rugatulus ants. In addition, we examined the relationship between colony size and worker productivity measured as per capita brood production. We found that colony metabolic rate scales with colony size to the 0.78 power and the number of brood scales with the number of workers to the 0.49 power. These regression analyses reveal that larger ant colonies use proportionally less energy and produce fewer brood per worker. Our findings provide new information on the relationships between colony size and energetic efficiency and productivity in a model ant genus. We discuss the potential mechanisms giving rise to allometric scaling of metabolic rate in ant colonies and the influence of colony size on energy consumption and productivity in general.  相似文献   

3.
As a general test of the energetic equivalence rule, we examined macroecological relationships among abundance, density and host body mass in a comparative analysis of the assemblages of trophically transmitted endoparasitic helminths of 131 species of vertebrate hosts. Both the numbers and total volume of parasites per gram of host decreased allometrically with host body mass, with slopes roughly consistent with those expected from the allometric relationship between host basal metabolic rate and body mass. From an evolutionary perspective, large body size may therefore allow hosts to escape from the deleterious effects of parasitism.  相似文献   

4.
Social insect societies dominate many terrestrial ecosystems across the planet. Colony members cooperate to capture and use resources to maximize survival and reproduction. Yet, when compared with solitary organisms, we understand relatively little about the factors responsible for differences in the rates of survival, growth and reproduction among colonies. To explain these differences, we present a mathematical model that predicts these three rates for ant colonies based on the body sizes and metabolic rates of colony members. Specifically, the model predicts that smaller colonies tend to use more energy per gram of biomass, live faster and die younger. Model predictions are supported with data from whole colonies for a diversity of species, with much of the variation in colony-level life history explained based on physiological traits of individual ants. The theory and data presented here provide a first step towards a more general theory of colony life history that applies across species and environments.  相似文献   

5.
Per Arneberg  Johan Andersen 《Oikos》2003,101(2):367-375
Abundance data from pitfall traps are widely used to estimate the relationship between beetle body size and abundance. Such data probably overestimate densities of large bodied species and may overestimate slopes of size‐abundance relationships. Here, we test this idea by comparing size‐abundance patterns found using data from pitfall trapping with those found with data from a quantitative method of estimating abundance, quadrat sampling. We use data from a total of 47 communities. As expected, slopes of size‐abundance relationships are significantly more positive when estimated using data from pitfall traps compared to when using quadrat sampling data. This was seen when looking across different communities, within communities sampled by both methods and when focusing on the set of species found by both methods within a community. These results were also generally found regardless of method of analysis, which were done using regression with species values as independent data points and using the independent contrast method, and with slopes estimated using ordinary least square regression or the structural relation. Most important, slopes of size‐abundance relationships based on data from pitfall traps were on average significantly more positive than ?0.75 on log–log scales, and thus inconsistent with the energetic equivalence rule. Slopes based on quadrat sampling, on the other hand, were on average not significantly different from ?0.75. The rejection of the energetic equivalence rule based on data from pitfall traps here is therefore a sampling artefact. Similar problems may apply to abundance data from virtually all insect trapping methods, and should make us consider re‐examining many of the size‐abundance patterns documented so far. As a large proportion of all animal species are insects, and traps are widely used to estimate abundance, this is a potentially important problem for our general understanding of the relationship between species body size and abundance.  相似文献   

6.
Resource limitation represents an important constraint on ecological communities, which restricts the total abundance, biomass, and community energy flux a given community can support. However, the exact relationship among these three measures of biological activity remains unclear. Here we use a simple framework that links abundance and biomass with an energetic constraint. Under constant energetic availability, it is expected that changes in abundance and biomass can result from shifts in the distribution of individual masses. We test these predictions using long-term data from a desert rodent community. Total energy use for the community has not changed directionally for 25 years, but species composition has. As a result, the average body size has decreased by almost 50%, and average abundance has doubled. These results lend support to the idea of resource limitation on desert rodent communities and demonstrate that systems are able to maintain community energy flux in the face of environmental change, through changes in composition and structure.  相似文献   

7.
On the basis of a comparison of Nearctic and Neotropical ants, social insects have been proposed to show a latitudinal gradient in colony size. Further, the "fasting endurance hypothesis," which predicts larger colonies in areas with extended periods of low food availability, was proposed as the mechanism driving the gradient. To test the generality of the pattern and its mechanism, we examined the relationships between termite colony size and both latitude and annual evapotranspiration, a measure of plant productivity. We found no evidence that colony size increases with increasing latitude or decreasing plant productivity. We conclude that the pattern identified for ants cannot be generalized to include social insects as a whole. As is the case for ecogeographic gradients in insect body sizes, a pattern that is reported for one taxon may not be consistent for other taxa at the global level.  相似文献   

8.
We studied size-abundance relationships in a species-rich Amazonian bird community and found that the slope of the logarithmic relationship between population density and bodymass (b = -0.22) is significantly shallower than expected under Damuth's energetic equivalence rule (EER), which states that population energy use (PEU) is independent of species body mass. We used estimates of avian field metabolic rates to examine the logarithmic relationship between PEU and body mass and its variation among ecological guilds. The relationship for all species had a significantly positive slope (b = 0.46), indicating that PEU of larger species was greater than that of smaller species. Analyses of guilds revealed significant variation. The slopes of the frugivore-omnivore, insectivore, and granivore guilds were all significantly positive, with that of the frugivore-omnivore guild being the steepest. In contrast, PEU did not vary significantly with species body mass among raptors. These results were confirmed, in analyses using both species values and phylogenetically independent contrasts, and the results do not support the EER in this community. The spatial distribution of resources and mechanisms of interference competition within guilds may explain why most patterns differed from the predictions of the EER. Other sources of variation, including the effects of scale, are also discussed.  相似文献   

9.
Species–energy theory can account for spatial variation in the abundance and community composition of animals, though the mechanisms of species–energy theory are under contention. We evaluated three competing mechanisms at the local spatial scale by conducting an in vivo light manipulation over supplemental ant nests placed in the leaf litter of a Costa Rican tropical rainforest. We found that the light environment did not alter the 10% rate of occupation of the supplemental nests, but light did alter the size of colonies and the genus‐level composition of the community. Light levels in the foraging range were positively associated with colony sizes of all ants, whereas light levels directly on the nest site were predictive of the occurrence of ant genera. Colonies of specialized predators, dacetine ants, were larger in more shaded foraging environments, and the functional group of generalized myrmicines exhibited an opposite pattern, with smaller‐sized colonies in response to shading. Responses of twig‐dwelling ants to the light environment were most consistent with the metabolic cost hypothesis as a mechanism of species–energy theory. We found mixed support for the thermal energy availability hypothesis, and scant support for the chemical energy hypothesis, as the litter depth, a measure of prey density, was not predictive of ant responses. In summary, at the local scale, we found patterns in colony size and life history are governed by light‐dependent mechanisms.  相似文献   

10.
Abstract.  The energetics of colony founding is investigated in the fungus gardening ants (Attini) Trachymyrmex septentrionalis and Cyphomyrmex rimosus . Similar to most ants, inseminated queens of these two species found nests independently unaccompanied by workers (haplometrosis). Whereas most ant founding queens seal themselves in a chamber and do not feed when producing a brood entirely from metabolic stores (claustral founding), the majority of fungus gardening ants must forage during the founding phase (semiclaustral founding). Laboratory-reared T. septentrionalis individuals comprise 84 dealate females collected after mating flights in June 2004. Twenty are immediately killed to obtain values for queen traits and another 20 after worker emergence for queen, fungus garden and worker traits. Cyphomyrmex rimosus comprise 22 dealate females collected in June 2005; ten of which are immediately killed and similarly prepared. Newly-mated T. septentrionalis queens have 25% of their dry weight as fat; whereas newly-mated C. rimosus queens contain 11% fat. These amounts are 50–75% less than most independently founding ant species. Trachymyrmex septentrionalis queens lose merely 5% of their energetic content during colony founding, whereas the total energetic content of their brood is more than three-fold the amount lost by the queen. Incipient T. septentrionalis colonies produce approximately half as much ant biomass per gram of fungus garden as do mature colonies. Similar to most ants, T. septentrionalis produces minim workers that are approximately 40% lighter than workers from mature colonies. Regardless of their size, T. septentrionalis workers contain much lower fat than do workers of claustral species. These data indicate that fungus gardening is adaptive because colonies can produce much cheaper offspring, making colony investment much lower.  相似文献   

11.
Synopsis Fish collections from 19 tidepools on a rock plateau at Martins Bay, on the east coast of Barbados, taken on three occasions (1981,1983 and 1987) contained 2078 individuals of 63 species. The number of species, individuals and total biomass increased with pool size. Partial residents, primarily juveniles of reef species, comprised 44% of species, 36% of numbers, and 26% of biomass. True and partial residents were of similar sizes. Most of the latter grow to larger sizes than those observed in the pools, indicating that the use of tidepools by fishes is size-dependent. Species richness, numbers of individuals and biomass in individual pools was positively associated with pool size. These relationships did not vary among sampling occasions. Species composition and relative abundance was also found to be similar among sampling occasions, leading to the conclusion that the tidepool assemblages are resilient and stable.  相似文献   

12.
1. Mean body mass (W) and mean numerical (N) or biomass (B) abundance are frequently used as variables to describe populations and species in macroecological and food web studies. 2. We investigate how the use of mean W and mean N or B, rather than other measures of W and/or accounting for the properties of all individuals, can affect the outcome of tests of macroecological and food web theory. 3. Theoretical and empirical analyses demonstrate that mean W, W at maximum biomass (W(mb)), W when energy requirements are greatest (W(me)) and the W when a species uses the greatest proportion of the energy available to all species in a W class (W(mpe)) are not consistently related. 4. For a population at equilibrium, relationships between mean W and W(me) depend on the slope b of the relationship between trophic level and W. For marine fishes, data show that b varies widely among species and thus mean W is an unreliable indicator of the role of a species in the food web. 5. Two different approaches, 'cross-species' and 'all individuals' have been used to estimate slopes of abundance-body mass relationships and to test the energetic equivalence hypothesis and related theory. The approaches, based on relationships between (1) log(10) mean W and log(10) mean N or B, and (2) log(10) W and log(10) N or B of all individuals binned into log(10) W classes (size spectra), give different slopes and confidence intervals with the same data. 6. Our results show that the 'all individuals' approach has the potential to provide more powerful tests of the energetic equivalence hypothesis and role of energy availability in determining slopes, but new theory and empirical analysis are needed to explain distributions of species relative abundance at W. 7. Biases introduced when working with mean W in macroecological and food web studies are greatest when species have indeterminate growth, when relationships between W and trophic level are strong and when the range of species'W is narrow.  相似文献   

13.
Hypotheses that relate body size to energy use are of particular interest in community ecology and macroecology because of their potential to facilitate quantitative predictions about species interactions and to clarify complex ecological patterns. One prominent size-energy hypothesis, the energetic equivalence hypothesis, proposes that energy use from shared, limiting resources by populations or size classes of foragers will be independent of body size. Alternative hypotheses propose that energy use will increase with body size, decrease with body size, or peak at an intermediate body size. Despite extensive study, however, size-energy hypotheses remain controversial, due to a lack of directly-measured data on energy use, a tendency to confound distinct scaling relationships, and insufficient attention to the ecological contexts in which predicted relationships are likely to occur. Our goal, therefore, was to directly evaluate size-energy hypotheses while clarifying how results would differ with alternate methods and assumptions. We comprehensively tested size-energy hypotheses in a vertebrate frugivore guild in a tropical forest in Madagascar. Our test of size-energy hypotheses, which is the first to examine energy intake directly, was consistent with the energetic equivalence hypothesis. This finding corresponds with predictions of metabolic theory and models of energy distribution in ecological communities, which imply that body size does not confer an advantage in competition for energy among populations or size classes of foragers. This result was robust to different assumptions about energy regulation. Our results from direct energy measurement, however, contrasted with those obtained with conventional methods of indirect inference from size-density relationships, suggesting that size-density relationships do not provide an appropriate proxy for size-energy relationships as has commonly been assumed. Our research also provides insights into mechanisms underlying local size-energy relationships and has important implications for predicting species interactions and for understanding the structure and dynamics of ecological communities.  相似文献   

14.
1. The empirical relationships among body size, species richness and number of individuals may give insight into the factors controlling species diversity and the relative abundances of species. To determine these relationships, we sampled the arthropods of grasslands and savannahs at Cedar Creek, MN using sweep nets (90 525 individuals of 1225 species) and pitfall traps (12 721 individuals of 92 species). Specimens were identified, enumerated and measured to determine body size.
2. Both overall and within abundant taxonomic orders, species richness and numbers of individuals peaked at body sizes intermediate for each group. Evolution could create unimodal diversity patterns by random diversification around an ancestral body size or from size-dependent fitness differences. Local processes such as competition or predation could also create unimodal diversity distributions.
3. The average body size of a species depended significantly on its taxonomic order, but on contemporary trophic role only within the context of taxonomic order.
4. Species richness ( S i) within size classes was related to the number of individuals ( I i) as S i =  I i0·5. This relationship held across a 100 000-fold range of body sizes. Within size classes, abundance distributions of size classes were all similar power functions. A general rule of resource division, together with similar minimum population sizes, is sufficient to generate the relationship between species richness and number of individuals.
5. Smaller bodied species had slightly shallower abundance distributions and may, in general, persist at lower densities than larger species.
6. Our results suggest there may be fewer undescribed small arthropod species than previously thought and that most undescribed species will be smaller than arthropods.  相似文献   

15.
The reasons for variation in group size among animal species remain poorly understood. Using ‘Ashmole's halo’ hypothesis of food depletion around colonies, we predict that foraging range imposes a ceiling on the maximum colony size of seabird species. We tested this with a phylogenetic comparative study of 43 species of seabirds (28 262 colonies), and investigated the interspecific correlation between colony size and foraging ranges. Foraging range showed weak relationships with the low percentiles of colony size of species, but the strength of the association increased for larger percentiles, peaking at the maximum colony sizes. To model constraints on the functional relationship between the focal traits, we applied a quantile regression based on maximum colony size. This showed that foraging range imposes a constraint to species’ maximum colony sizes with a slope around 2. This second‐order relationship is expected from the equation of the area of a circle. Thus, our large dataset and innovative statistical approach shows that foraging range imposes a ceiling on seabird colony sizes, providing strong support to the hypothesis that food availability is an important regulator of seabird populations.  相似文献   

16.
DeLong JP 《Biology letters》2011,7(4):611-614
The energetic equivalence rule states that population-level metabolic rate is independent of average body size. This rule has been both supported and refuted by allometric studies of abundance and individual metabolic rate, but no study, to my knowledge, has tested the rule with direct measurements of whole-population metabolic rate. Here, I find a positive scaling of whole-colony metabolic rate with body size for eusocial insects. Individual metabolic rates in these colonies scaled with body size more steeply than expected from laboratory studies on insects, while population size was independent of body size. Using consumer-resource models, I suggest that the colony-level metabolic rate scaling observed here may arise from a change in the scaling of individual metabolic rate resulting from a change in the body size dependence of mortality rates.  相似文献   

17.
The relationship between body mass and abundance is a major focus for research in macroecology. The form of this relationship has been suggested to reflect the partitioning of energy among species. We revisit classical datasets to show that size-density relationships vary systematically among taxonomic groups, with most variation occurring at the order level. We use this knowledge to make a novel test of the 'energy equivalence rule', at the taxonomic scale appropriate for the data. We find no obvious relationship between order-specific exponents for abundance and metabolic rate, although most orders show substantially shallower (less negative) scaling than predicted by energy equivalence. This finding implies greater energy flux among larger-bodied animals, with the largest species using two orders of magnitude more energy than the smallest. Our results reject the traditional interpretation of energy equivalence as a predictive rule. However, some variation in size-density exponents is consistent with a model of geometric constraints on foraging.  相似文献   

18.
Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony’s size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. Received 13 December 2005; revised 9 May 2006; accepted 15 May 2006.  相似文献   

19.
Abstract The Argentine ant, Linepithema humile (Mayr), is a widespread invasive ant species that has been associated with losses of native ant species and other invertebrates from its introduced range. To date, various abiotic conditions have been associated with limitations to the spread of Argentine ants, however, competitive interactions with native ant fauna may also affect the spread of Argentine ants. Here, we experimentally manipulated colony sizes of Argentine ants in the laboratory to assess whether Argentine ants were able to survive and compete for resources with a widespread, dominant native ant, Iridomyrmexrufoniger’. The results showed that over 24 h, the proportions of Argentine ants that were alive, at baits, and at sugar water decreased significantly in the presence of Iridomyrmex. In addition, Argentine ant mortality increased over time, however, the proportion of the colony that was dead decreased with the largest colony size. Argentine ants were only able to overcome Iridomyrmex when their colony sizes were 5–10 times greater than those of the native ants. We also conducted trials in which colonies of Argentine ants of varying sizes were introduced to artificial baits occupied by Iridomyrmex in the field. The results showed that larger Argentine ant colonies significantly affected the foraging success of Iridomyrmex after the initial introduction (5 min). However, over the first 20 min, when the Argentine ants were present at the baits, and over the entire 50 min experimental period, the numbers of Iridomyrmex at baits did not differ significantly with the size of the Argentine ant colony. This is the first experimental study to investigate the role of colony size in the invasion biology of Argentine ants in Australia, and the results suggest that Iridomyrmex may reduce the spread of Argentine ants, and that Argentine ants may need to attain large colony sizes in order to survive in the presence of Iridomyrmex. We address the implications of these findings for the invasion success of Argentine ants in Australia, and discuss the ability of Argentine ants to attain large colony sizes in introduced areas.  相似文献   

20.
Warm temperatures decrease insect developmental time and body size. Social life could buffer external environmental variations, especially in large social groups, either through behavioral regulation and compensation or through specific nest architecture. Mean worker size and distribution of worker sizes within colonies are important parameters affecting colony productivity as worker size is linked to division of labor in insect societies. In this paper, we investigate the effect of stressful warm temperatures and the role of social environment (colony size and size of nestmate workers) on the mean size and size variation of laboratory-born workers in the small European ant Temnothorax nylanderi. To do so, we reared field-collected colonies under medium or warm temperature treatments after having marked the field-born workers and removed the brood except for 30 first instar larvae. Warm temperature resulted in the production of fewer workers and a higher adult mortality, confirming that this regime was stressful for the ants. T. nylanderi ants followed the temperature size rule observed in insects, with a decreased developmental time and mean size under warm condition. Social environment appeared to play an important role as we observed that (i) larger colonies buffered the effect of temperature better than smaller ones (ii) colonies with larger workers produced larger workers whatever the rearing temperature and (iii) the coefficient of variation of worker size was similar in the field and under medium laboratory temperature. This suggests that worker size variation is not primarily due to seasonal environmental fluctuations in the field. Finally, we observed a higher coefficient of variation of worker size under warm temperature. We propose that this results from a disruption of social regulation, i.e. the control of nestmate workers over developing larvae and adult worker size, under stressful conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号