首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brassinosteroids are plant steroid hormones that regulate plant organs and chloroplast development. The detailed molecular mechanism for plant development by BR signaling is yet to be revealed, and many points regarding the relationship between BR signaling and chloroplast development remain unknown. We identify here the dominant mutant Brz-insensitive-pale green3-1D (bpg3-1D) from the Arabidopsis FOX lines that show reduced sensitivity to the chlorophyll accumulation promoted by the BR biosynthesis inhibitor, Brassinazole (Brz), in the light. BPG3 encodes a novel chloroplast protein that is evolutionally conserved in bacteria, algae, and higher plants. The expression of BPG3 was induced by light and Brz. The inhibition of electron transport in photosystem II of the chloroplasts was detected in bpg3-1D. These results suggest that BPG3 played an important role in regulating photosynthesis in the chloroplast under BR signaling.  相似文献   

2.
3.
Kim BH  Malec P  Waloszek A  von Arnim AG 《Planta》2012,236(2):677-690
BPG2 (Brz-insensitive pale green 2) is a dark-repressible and light-inducible gene that is required for the greening process in Arabidopsis. Light pulse experiments suggested that light-regulated gene expression of BPG2 is mediated by phytochrome. The T-DNA insertion mutant bpg2-2 exhibited a reduced level of chlorophyll and carotenoid pigmentation in the plastids. Measurements of time resolved chlorophyll fluorescence and of fluorescence emission at 77 K indicated defective photosystem II and altered photosystem I functions in bpg2 mutants. Kinetic analysis of chlorophyll fluorescence induction suggested that the reduction of the primary acceptor (QA) is impaired in bpg2. The observed alterations resulted in reduced photosynthetic efficiency as measured by the electron transfer rate. BPG2 protein is localized in the plastid stroma fraction. Co-immunoprecipitation of a formaldehyde cross-linked RNA-protein complex indicated that BPG2 protein binds with specificity to chloroplast 16S and 23S ribosomal RNAs. The direct physical interaction with the plastid rRNAs supports an emerging model whereby BPG2 provides light-regulated ribosomal RNA processing functions, which are rate limiting for development of the plastid and its photosynthetic apparatus.  相似文献   

4.
Abstract

Halimeda has been found particularly suitable for studies of long‐distance chloroplast migration by virtue of its coenocytic structure and calcium carbonate skeleton. A circadian rhythm of chloroplast migration in Halimeda distorta was monitored by videography of segment surface pigmentation. In normal 12 h light/12 h dark treatments synchronised with dawn and dusk, the segments were green all day, began to become pale immediately the light was turned off, and then remained almost white for most of the night until beginning to re‐green a few hours before dawn. As a result of that, they were already quite green by the time the light was turned on. In continuous darkness a similar cycle, albeit with reducing amplitude and a period of about 23 hours, was maintained for at least 7 days. However, this cycle differed significantly from the normal one in that the segments did not remain green after the light was not switched on at dawn, but rather began to pale immediately thereafter. Conversely, in continuous light the segments did not become pale at any time. Thus, the rhythmical re‐emergence of the chloroplasts before dawn and their subsequent withdrawal appears to be controlled by an endogenous rhythm which is independent of light. However, light does completely, but reversibly, inhibit the chloroplast withdrawal component of the cycle. This behaviour of the chloroplasts in Halimeda is very similar to that in the related alga, Caulerpa, but it is quite different from that in another extensively Studied but unrelated siphonous green alga, Acetabularia, in which the circadian rhythm of chloroplast migration is maintained in continuous light.  相似文献   

5.
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high‐sensitivity, non‐invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image‐based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less‐mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1‐5 phot2‐1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual‐imaging platform also allowed us to develop a straightforward approach to correct non‐photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy‐dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.  相似文献   

6.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

7.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes the energy wasteful cyanide (CN)‐resistant respiration and plays a role in optimizing photosynthesis. Although it has been demonstrated that leaf AOX is upregulated after illumination, the in vivo mechanism of AOX upregulation by light and its physiological significance are still unknown. In this report, red light and blue light‐induced AOX (especially AOX1a) expressions were characterized. Phytochromes, phototropins and cryptochromes, all these photoreceptors mediate the light‐response of AOX1a gene. When aox1a mutant seedlings were grown under a high‐light (HL) condition, photobleaching was more evident in the mutant than the wild‐type plants. More reactive oxygen species (ROS) accumulation and inefficient dissipation of chloroplast reducing‐equivalents in aox1a mutant may account for its worse adaptation to HL stress. When etiolated seedlings were exposed to illumination for 4 h, chlorophyll accumulation was largely delayed in aox1a plants. We first suggest that more reduction of the photosynthetic electron transport chain and more accumulation of reducing‐equivalents in the mutant during de‐etiolation might be the main reasons.  相似文献   

8.
9.
10.
11.
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid‐localized proteins that perform essential functions in leaf growth and development. A large‐scale screen previously allowed us to isolate ethyl methanesulfonate‐induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7‐1 (anu7‐1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic‐lethal mutations. ANU7 encodes a plant‐specific protein that contains a domain similar to the central cysteine‐rich domain of DnaJ proteins. The observed genetic interaction of anu7‐1 with a loss‐of‐function allele of GENOMES UNCOUPLED1 suggests that the anu7‐1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7‐1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid‐encoded genes, we found that anu7‐1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed.  相似文献   

12.
Variegation mutants and mechanisms of chloroplast biogenesis   总被引:6,自引:0,他引:6  
Variegated plants typically have green‐ and white‐sectored leaves. Cells in the green sectors contain normal‐appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes. In some plants, the green and white sectors have different genotypes, but in others they have the same (mutant) genotype. One advantage of variegations is that they provide a means of studying genes for proteins that are important for chloroplast development, but for which mutant analysis is difficult, either because mutations in a gene of interest are lethal or because they do not show a readily distinguishable phenotype. This paper focuses on Arabidopsis variegations, for which the most information is available at the molecular level. Perhaps the most interesting of these are variegations caused by defective nuclear gene products in which the cells of the mutant have a uniform genotype. Two questions are of paramount interest: (1) What is the gene product and how does it function in chloroplast biogenesis? (2) What is the mechanism of variegation and why do green sectors arise in plants with a uniform (mutant) genotype? Two paradigms of variegation mechanism are described: immutans (im) and variegated2 (var2). Both mechanisms emphasize compensating activities and the notion of plastid autonomy, but redundant gene products are proposed to play a role in var2, but not in im. It is hypothesized that threshold levels of certain activities are necessary for normal chloroplast development.  相似文献   

13.
14.
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above‐ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9‐induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild‐type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.  相似文献   

15.
as1, for antenna size mutant 1, was obtained by insertion mutagenesis of the unicellular green alga Chlamydomonas reinhardtii. This strain has a low chlorophyll content, 8% with respect to the wild type, and displays a general reduction in thylakoid polypeptides. The mutant was found to carry an insertion into a homologous gene, prokaryotic arsenite transporter (ARSA), whose yeast and mammal counterparts were found to be involved in the targeting of tail‐anchored (TA) proteins to cytosol‐exposed membranes, essential for several cellular functions. Here we present the characterization in a photosynthetic organism of an insertion mutant in an ARSA‐homolog gene. The ARSA1 protein was found to be localized in the cytosol, and yet its absence in as1 leads to a small chloroplast and a strongly decreased chlorophyll content per cell. ARSA1 appears to be required for optimal biogenesis of photosynthetic complexes because of its involvement in the accumulation of TOC34, an essential component of the outer chloroplast membrane translocon (TOC) complex, which, in turn, catalyzes the import of nucleus‐encoded precursor polypeptides into the chloroplast. Remarkably, the effect of the mutation appears to be restricted to biogenesis of chlorophyll‐binding polypeptides and is not compensated by the other ARSA homolog encoded by the C. reinhardtii genome, implying a non‐redundant function.  相似文献   

16.
17.
The role of a subfamily of lipid globule‐associated proteins, referred to as plant fibrillins (FIB1a, ‐1b, ‐2), was determined using a RNA interference (RNAi) strategy. We show that Arabidopsis plants with reduced levels of these plastid structural proteins are impaired in long‐term acclimation to environmental constraint, namely photooxidative stress imposed by high light combined with cold. As a result, their photosynthetic apparatus is inefficiently protected. This leads to the prevalence of an abnormal granal and stromal membrane arrangement, as well as higher photosystem II photoinhibition under stress. The visible phenotype of FIB1‐2 RNAi lines also includes retarded shoot growth and a deficit in anthocyanin accumulation under stress. All examined phenotypic effects of lower FIB levels are abolished by jasmonate (JA) treatment. An atypical expression pattern of several JA‐induced genes was observed in RNAi plants. A JA‐deficient mutant was found to share similar stress phenotypic characteristics with FIB RNAi plants. We conclude a new physiological role for JA, namely acclimation of chloroplasts, and that light/cold stress‐related JA biosynthesis is conditioned by the accumulation of plastoglobule‐associated FIB1‐2 proteins. Consistent correlative data suggest that this FIB effect is mediated by plastoglobule (and triacylglycerol) accumulation as the potential site for initiating the chloroplast stress‐related JA biosynthesis.  相似文献   

18.
19.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   

20.
The atToc33 protein is one of several pre‐protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis‐related pre‐proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild‐type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159‐deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号