首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the montane localities of subtropical regions, winter is the dry season and ectothermic drosophilids are expected to evolve desiccation resistance to cope with drier climatic conditions. An analysis of six montane populations (600–2226 m) of D. melanogaster showed variations for body melanisation (i.e. pigmentation) and desiccation resistance across seasons as well as along altitude. During winter season, plastic changes for melanisation of three posterior abdominal segments (5th + 6th + 7th) correspond with higher desiccation resistance. Thus, we analyzed genetic and plastic effects for these ecophysiological traits by comparing wild-caught and laboratory reared individuals of D. melanogaster for autumn as well as winter season. A ratio of slope values in wild vs. laboratory populations has shown a 1.64-fold plastic effect during autumn; and a two-fold effect during winter. For body melanisation and desiccation resistance, evolutionary response to altitudinal environmental gradient is similar to the phenotypic response across seasons. Thus, our observations are in agreement with the co-gradient hypothesis. Further, we tested the hypothesis whether a thicker cuticle (either due to melanisation or cuticular lipids) leads to lesser cuticular water loss and higher desiccation resistance across seasons as well as according to altitude. Based on within and between population analyses, body melanisation was found to be positively correlated with desiccation resistance but negatively with cuticular water loss. Interestingly, there were no changes in the amount of cuticular lipids per fly across seasons as well as along altitude; and therefore cuticular lipids did not account for desiccation resistance. Cuticular water loss exhibited negative correlation with body melanisation but not with cuticular lipids as well as with changes in body size across seasons. Thus, our data suggest that seasonal changes in body melanisation confer desiccation resistance in montane populations of D. melanogaster.  相似文献   

2.
We investigated geographical variations in three fitness‐related traits (body melanisation, ovariole number and fecundity) in laboratory‐reared offspring of 10 populations of Drosophila melanogaster. The populations were collected from adjacent lowland and highland localities (~80–100 km apart) in the tropical as well as subtropical regions (11.15–31.06 °N) covering a linear distance about 3 000 kilometers from south to north on the Indian subcontinent. Persistence of within‐as well as between‐population differences at 21 °C suggest that observed variations in fitness‐related traits have a genetic basis. Populations from higher altitudes showed consistently higher trait values (1.4‐fold increase) as compared with their corresponding lowland populations. By contrast, latitudinal variations were about two‐fold higher across the entire continent. Along latitude as well as altitude, population means showed higher correlation values (r > 0.98) between all the three fitness traits. However, on the basis of within‐population analysis (assorted darker and lighter flies), changes in body melanisation were significantly correlated with fecundity but not with ovariole number. Thus, analysis of within‐population trait variability should be preferred as compared with data on population means for adaptive significance of fitness‐related traits. In the present study, the role of climatic selection is evident from regression analysis with changes in annual average temperature of the sites of origin of populations along latitude as well as altitude.  相似文献   

3.
We investigated the role of cuticular lipids, body melanisation and body size in conferring contrasting levels of desiccation resistance in latitudinal populations of Drosophila melanogaster and Drosophila ananassae on the Indian subcontinent. Contrary to the well known role of cuticular lipids in water proofing in diverse insect taxa, there is lack of geographical variations in the amount of cuticular lipids per fly in both the species. In D. ananassae, quite low levels of body melanisation are correlated with lower desiccation resistance. By contrast, increased levels of desiccation resistance are correlated with quite high melanisation in D. melanogaster. Thus, species specific cuticular melanisation patterns are significantly correlated with varying levels of desiccation resistance within as well as between populations and across species. Role of body melanisation in desiccation resistance is further supported by the fact that assorted dark and light flies differ significantly in cuticular water loss, hemolymph and dehydration tolerance. However, similar patterns of body size variation do not account for contrasting levels of desiccation resistance in these two Drosophila species. Climatic selection is evidenced by multiple regression analysis with seasonal amplitude of thermal and humidity changes (Tcv and RHcv) along latitude on the Indian subcontinent. Finally, the contrasting levels of species specific distribution patterns are negatively correlated with RHcv of sites of origin of populations i.e. a steeper negative slope for D. ananassae corresponds with its desiccation sensitivity as compared with D. melanogaster. Thus, evolutionary changes in body melanisation impact desiccation resistance potential as well as distribution patterns of these two Drosophila species on the Indian subcontinent.  相似文献   

4.
  • Steep climatic gradients boost morphological and physiological adjustments in plants, with consequences on performance. The three principal woody species of the Sierras Grandes Mountains of central Argentina have marked differences in sapling performance along their altitudinal distribution. We hypothesize that the steep gradient of climatic conditions across the species’ altitudinal distribution promotes trait differences between populations of different altitudes that are inherited by the following generation.
  • Seeds from different altitudes were exposed to three temperature regimes to assess differential germination responses. Saplings were then transplanted to a greenhouse to assess possible variations in attributes and performance after 18 months.
  • The three species showed differences in germination responses to temperature among altitudes and/or in sapling attributes and performance. In Maytenus boaria and Escallonia cordobensis, germination success was higher under high temperatures for the highest‐altitude, whereas lower temperatures boosted germination of the lowest altitudes. Polylepis australis showed no differences in germination among temperature treatments. In the greenhouse, saplings of the three species from intermediate altitudes showed high performance, whereas the upper and lower populations seemed to be adjusted to tolerating more stressful conditions (i.e., lower temperatures at the upper end and water stress at the lower end), showing lower performance toward both altitudinal limits.
  • These patterns agree with those described for saplings growing under field conditions, suggesting adjustments in response to environmental changes undergone by populations along the altitudinal range. The marked adjustments of populations to the local environment suggest a potentially high impact of climatic change on species distribution.
  相似文献   

5.
Summary Life cycles of California populations of the grasshopper, Melanoplus sanguinipes, varied along an altitudinal gradient. Temperature records indicate a longer season at low altitude on the coast, based on computation of degree days available for development, even though summer air temperatures are cooler than at high altitude; this is a result of warm soil temperatures. At high and low altitudes there was a high proportion of diapause eggs oviposited, while intermediate proportions of diapause eggs occurred at mid altitudes. The low altitude, and especially sea level, populations diapaused at all stages of embryonic development, while at high altitudes most diapause occurred in the late stages just before hatch. Diapause was more intense at high altitudes. One result of diapause differences was delayed hatching in the sea level population. Nymphal development and development of adults to age at first reproduction were both accelerated at high altitude relative to sea level. At lower temperatures (27° C) there was a tendency for short days to accelerate development of sea level nymphs, but not high altitude nymphs. In both sea level and high altitude grasshoppers, short days accelerated maturation of adults to onset of oviposition at warm temperature (33° C); there was little reproduction at 27° C. Population differences for all traits studied appear to be largely genetic with some maternal effects possible. We interpret diapause variation at low and mid altitudes to be responses to environmental uncertainty and variations in development rates to be adaptations to prevailing season lengths.  相似文献   

6.
The ability to express heat‐shock proteins (HSP) under thermal stress is an essential mechanism for ectotherms to cope with unfavourable conditions. In this study, we investigate if Copper butterflies originating from different altitudes and/or being exposed to different rearing and induction temperatures show differences in HSP70 expression. HSP70 expression increased substantially at the higher rearing temperature in low‐altitude butterflies, which might represent an adaptation to occasionally occurring heat spells. On the other hand, high‐altitude butterflies showed much less plasticity in response to rearing temperatures, and overall seem to rely more on genetically fixed thermal stress resistance. Whether the latter indicates a higher vulnerability of high‐altitude populations to global warming needs further investigation. HSP70 expression increased with both colder and warmer induction temperatures.  相似文献   

7.
Seasons vary in the average environmental conditions a species experiences, meaning that optimum strategies for concealment or feeding may also vary. Populations of the ladybird Harmonia axyridis contain both melanic and non-melanic forms and changes in allele frequency in some populations suggest that melanism may be advantageous in winter, but costly in summer. This could favour the evolution of phenotypic plasticity in colour pattern, as individuals which changed colour throughout the year would be able to maximise their fitness. We have previously shown in the laboratory that melanisation in the “non-melanic” morph of H. axyridis, f. succinea, is predominantly controlled by temperature during development. We now report that wild populations of H. axyridis f. succinea also conform to this principle: lower field temperatures during development produce individuals with more and larger spots. Furthermore, we have found that the critical period of development where temperature affects the level of melanisation covers the pupal and late larval stages, and melanisation increases with the length of time spent at cold temperature. We conclude it is likely that the temperature experienced during this period is used to predict the temperature encountered as an adult. This may allow individuals to produce the level of melanisation necessary to maintain activity levels at the temperatures encountered when they emerge. The long sensitive period seen in H. axyridis may be in order to avoid mismatches between melanisation and seasonal environment.  相似文献   

8.
Altitudinal gradients offer a good opportunity to study organisms' adaptations to clinal environmental variables. Regarding altitude, the most influential variables on organisms are temperature and ultraviolet (UV) solar radiation, the first decreasing and the second increasing with altitude. Both variables affect ectotherms' biology, as ectotherms depend on environmental temperature for thermoregulation, frequently being heliotherms. Here, we studied dorsal coloration in the lizard Psammodromus algirus (Linnaeus, 1758) along a wide altitudinal gradient (2200 m) in Sierra Nevada (south‐east Spain). We hypothesize that the skin will be darker with altitude, i.e. in environments with lower temperatures and higher UV radiation intensity. Results show that individual dorsal colorations became darker at high altitude. We propose two non‐mutually exclusive explanations for this result: (1) darker dorsal surface would favour faster warming at high altitudes, where temperature is lower, and (2) darker dorsal surface would protect against UV radiation, stronger at high altitudes. We found significant relationships between both temperature and UV radiation and population dorsal darkness, giving mixed support for the two explanations. Moreover, dorsal hue was positively correlated with substrate hue, suggesting that hue evolved to maximize crypsis. Our study therefore suggests that geographical variation in dorsal coloration in this lizard is adaptive, and darkness coloration might have evolved in response to adverse conditions (low temperature and high UV radiation) at high altitudes. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 132–141.  相似文献   

9.
The body size of a univoltine carabid beetle Carabus tosanus on Shikoku Island, Japan, was clearly smaller in higher‐altitude populations (subspecies), which possibly represents incipient speciation. To explore the determinants of altitudinal differences in body size in this species, we studied the degree of phenotypic plasticity by conducting rearing experiments at two constant temperatures and examined genetic differences through interpopulation crosses. At 15 °C, C. tosanus had a longer developmental period and a shorter adult body than at 20 °C. Nevertheless, variation in body size due to temperature effects (phenotypic plasticity) was small compared to the interpopulation differences, which suggests substantial genetic differences between populations (subspecies) at different altitudes. In F1 offspring from crosses between a low‐altitude (subspecies tosanus) and a high‐altitude population (subspecies ishizuchianus), adult body length was affected by the genotypes of both parents, with an interaction effect of parental genotype and offspring sex. Further analyses revealed that adult body length was affected by sex‐linked factors in addition to autosomal factors. These genetic differences in body size may have resulted from adaptations to different altitudes and may be important for the process of incipient speciation because body size differences could contribute to premating reproductive isolation.  相似文献   

10.
Aim To understand global patterns of genetic variation in plant species on mountains and to consider the significance of mountains for the genetic structure and evolution of plant species. Location Global. Methods We review published studies. Results Genetic diversity within populations can vary along altitudinal gradients in one of four patterns. Eleven of 42 cited studies (26% of the total) found that populations at intermediate altitudes have greater diversity than populations at lower and higher altitudes. This is because the geographically central populations are under optimal environmental conditions, whereas the peripheral populations are in suboptimal situations. The second pattern, indicating that higher populations have less diversity than lower populations, was found in eight studies (19%). The third pattern, indicating that lower populations have lower diversity than higher populations, was found in 10 studies (24%). In 12 studies (29%), the intrapopulation genetic variation was found to be unaffected by altitude. Evidence of altitudinal differentiation was found in more than half of these studies, based on measurements of a range of variables including genome size, number of chromosomes or a range of loci using molecular markers. Furthermore, great variation has been found in phenotypes among populations at different altitudes in situ and in common garden experiments, even in cases where there was no associated variation in molecular composition. Mountains can be genetic barriers for species that are distributed at low elevations, but they can also provide pathways for species that occupy high‐elevation habitats. [Correction added after publication 9 October 2007: ‘less diversity’ changed to ‘greater diversity’ in the second sentence of the Results section of the Abstract] Main conclusions Genetic diversity within populations can vary along altitudinal gradients as a result of several factors. The results highlight the importance of phenotypic examinations in detecting altitudinal differences. The influence of mountain ridges on genetic differentiation varies depending, inter alia, on the elevation at which the species occurs. Based on these findings, zoning by altitudes or ridges would be helpful for the conservation of tree populations with the onset of global warming.  相似文献   

11.
Wild caught samples of Drosophila melanogaster from five highland localities showed parallel changes in melanisation and desiccation resistance in darker versus lighter phenotypes, i.e. darker flies (>45% melanisation) showed significantly higher desiccation resistance than lighter flies (<30% melanisation). In order to find an association between body melanisation and desiccation resistance, highland and lowland populations from tropical and subtropical regions (11.15-31.06 degrees N) of the Indian subcontinent were raised and investigated at 21 degrees C for four physiological traits, i.e. per cent body melanisation, desiccation resistance, rate of water loss and rate of water absorption. On the basis of mother-offspring regression, body melanisation and desiccation resistance showed higher heritability (0.58-0.68) and thus these traits are suitable for laboratory analyses. Significantly higher melanisation as well as desiccation resistance were observed in highland populations as compared with lowland populations. The rates of water loss as well as absorption were negatively correlated with body melanisation, i.e. darker flies from highlands showed a reduced rate of water loss as well as a lower rate of water absorption while the reverse trend was observed in lighter flies from lowlands. On the basis of multiple regressions, significant effects due to combined altitude and latitude were observed for all the four physiological traits. Local climatic conditions (i.e. annual average temperature and relative humidity) helped in explaining parallel changes in body melanisation and desiccation resistance in D. melanogaster.  相似文献   

12.
13.
Recent studies have shown that biotic interactions can shape species' distributions, but empirical data on multiple biotic interactions are scarce. Therefore, we examined effects of plant–plant and plant–herbivore interactions on plant survival, growth and reproduction at different altitudes. For these purposes we conducted a factorial neighbor removal and large herbivore exclusion experiment with six transplant species (three tall forbs with their main distribution at low altitudes and three small forbs with their main distribution at high altitudes) on Låkta?ohkka Mountain, northern Sweden, replicated at two altitudes (ca 600 and 900 m a.s.l.) and consequently a 2.1°C difference in summer air temperatures. Overall transplant survival was 93%. Two out of three tall forbs grew better at low than at high altitudes, while no significant differences in growth between altitudes were found for any of the three small forbs. Since the main difference in abiotic conditions between the altitudes was most likely in temperature (as the sites were topographically and edaphically matched as closely as possible), this result indicates that climatic warming could induce upward migration of tall low‐altitude forbs. Negative plant–plant interactions prevailed at both altitudes, and we found indications that competition may set the lower altitudinal limits of some small tundra forbs. Thus, increased competition in response to climate warming may potentially shift the lower margins of high‐altitude forbs' distributions upward. Large mammalian grazers reduced the growth of tall forbs and enhanced the flowering of small forbs, and grazers could thus at least partly counteract the anticipated warming‐induced distribution shifts.  相似文献   

14.
J. Gurevitch 《Genetics》1992,130(2):385-394
Achillea lanulosa has complex, highly dissected leaves that vary in shape and size along an altitudinal gradient. Plants from a high and an intermediate altitude population were clonally replicated and grown in a controlled environment at warm and cool conditions under bright light. There were genetic differences among populations and among individuals within populations in leaf size and shape. Heritabilities for leaf size and shape characters were moderate. Leaves of the lower altitude population were larger and differed from the higher altitude plants in both coarse and fine shape. Plastic response to temperature of the growth environment paralleled the genetic differentiation between low and high altitude populations. There was no apparent trade-off between genetic control over morphology and the capacity for directional plastic response to the environment. Differences in leaf dissection and size at contrasting altitudes in this species are the result of both genetic divergence among populations and of acclimative responses to local environments.  相似文献   

15.
Altitudinal gradients in mountain regions are short‐range clines of different environmental parameters such as temperature or radiation. We investigated genomic and phenotypic signatures of adaptation to such gradients in five Arabidopsis thaliana populations from the North Italian Alps that originated from 580 to 2350 m altitude by resequencing pools of 19–29 individuals from each population. The sample includes two pairs of low‐ and high‐altitude populations from two different valleys. High‐altitude populations showed a lower nucleotide diversity and negative Tajima's D values and were more closely related to each other than to low‐altitude populations from the same valley. Despite their close geographic proximity, demographic analysis revealed that low‐ and high‐altitude populations split between 260 000 and 15 000 years before present. Single nucleotide polymorphisms whose allele frequencies were highly differentiated between low‐ and high‐altitude populations identified genomic regions of up to 50 kb length where patterns of genetic diversity are consistent with signatures of local selective sweeps. These regions harbour multiple genes involved in stress response. Variation among populations in two putative adaptive phenotypic traits, frost tolerance and response to light/UV stress was not correlated with altitude. Taken together, the spatial distribution of genetic diversity reflects a potentially adaptive differentiation between low‐ and high‐altitude populations, whereas the phenotypic differentiation in the two traits investigated does not. It may resemble an interaction between adaptation to the local microhabitat and demographic history influenced by historical glaciation cycles, recent seed dispersal and genetic drift in local populations.  相似文献   

16.
Plants in alpine habitats are exposed to severe environmental stresses including temperature and radiation extremes. The observation that flowering heads from high altitude populations of Scorzoneroides helvetica (Mérat) J.Holub (synonym: Leontodon helveticus Mérat) contained higher amounts of luteolin derivatives than conspecific populations in lower altitudes prompted further investigations. An elevational increase of phenolics was confirmed in flowering heads of neophytic populations of three additional taxa of the Cichorieae tribe in New Zealand. A solely genetic basis of the altitudinal trends of flavonoids and phenolic acids was eliminated by field experiments with cultivars of the medicinal herbs Arnica montana L. and Matricaria chamomilla L. planted at nine different altitudes ranging from 600 to 2,200 m in the Tyrolean Alps. Parallel experiments on potted plants excluded soil characteristics as the factor causing the observed variation. The initial hypotheses that enhanced UV-B radiation in higher altitudes was triggering an increase in the ratio of B-ring-ortho-diphenolic versus B-ring-monophenolic flavonols in flowering heads of Arnica was disproved by climate chamber experiments resulting in no significant difference between plants grown in ambient and threefold ambient UV-B radiation regimes. In contrast, an increase of this ratio similar to the changes observed in higher altitudes resulted from a decrease in temperature by 5°C in a second climate chamber experiment. Conclusively, enhanced UV-B radiation is probably not the key factor inducing shifts in the phenolic composition in Asteraceae growing at higher altitudes but it is rather the temperature which decreases with altitude.  相似文献   

17.
Abstract 1. Seasonal variation in immune response has rarely been investigated in invertebrates and, therefore, we have studied this using territorial adult males of the damselfly, Hetaerina americana (Fabricius), in several generations, for a year and a half. 2. We investigated and related seasonal variation in red pigmented wing spot size (an ornamental trait) and body size to fat reserves using four immunity components – melanisation ability, phenoloxidase (PO) and nitric oxide (NO) activity, and haemolymph protein concentration – and survival ability after a bacterial immune challenge. 3. There was seasonal variation in spot expression, being more intense in the non‐winter months and less intense in winter months, and, to some extent, a similar pattern was found for NO. Although there was also variation in melanisation, PO activity, protein concentration and fat reserves, this was not consistently related to variation in spot size. Survival was lower in the winter than in non‐winter months. 4. Animals with larger spot and body size had greater values of melanisation, PO and NO activity, and protein concentration. The relation of spot and body size with fat reserves is still not clear. 5. Unlike other studies, ornament was not similarly correlated with all typical immune components (at best, mainly NO). 6. Similar to what occurs in vertebrates, survival is lower during the winter months. In the case of vertebrate studies, however, the same individual suffers these changes. In the American rubyspot, distinct cohorts demonstrated seasonal differences.  相似文献   

18.
Simultaneous sampling for microorganisms was accomplished at altitudes of 690, 1,600, and 3,127 meters. The location of temperature inversions in relation to the collection altitude determined, to a great extent, the micropopulation. High micropopulations were found when an inversion was above the sampling altitude, and low populations when the inversion was below the sampling altitude. Diurnal periodicity which could be generally correlated with periods of minimal and maximal convective activity was observed. Evidence is presented showing that the micropopulation is more stable at higher altitudes than at lower altitudes.  相似文献   

19.
We investigated patterns of flower‐size variation along altitudinal gradients in the bee‐pollinated perennial Campanula rotundifolia (Campanulaceae) by examining 22 Norwegian populations at altitudes between 240 and 1100 m a.s.l. We explored potential mechanisms for the underlying pattern by quantifying pollinator–faunal composition, pollinator‐visitation rates and pollen limitation of seed set in subsets of the study populations. Despite a decrease in plant size, several measures of flower size increased with elevation. Bumble bees were the main pollinators at both alpine and lowland sites in the study area. However, species composition of the pollinator fauna differed, and pollinators were larger in higher‐elevation than in lower‐elevation sites. Pollinator visitation rates were lower at higher‐elevations than at lower elevations. Pollen limitation of seed set did not vary significantly with altitude. Our results are consistent with differences in bumble‐bee size and visitation rates as causal mechanisms for the relatively larger flowers at higher elevations, in three non‐mutually exclusive ways: 1) Larger flowers reflect selection for increased attractiveness where pollinators are rare. 2) Larger and fewer flowers represent a risk avoidance strategy where the probability of pollination is low on any given day. 3) Flower size variation reflects selection to improve the fit of pollinators with fertile structures by matching flower size to pollinator size across sites.  相似文献   

20.
The duration of Drosophila melanogaster larval and pupal periods was measured in laboratory thermal lines and in populations collected along a latitudinal transect in eastern Australia. In replicated laboratory lines kept for 9 years at 16.5° C or 25° C the duration of larval development had continued to diverge compared with 4 and 5 years previously, with more rapid larval development, and hence reduced total duration of pre-adult development, in the low temperature lines at both experimental temperatures. After 4 years of separate evolution, lines derived from the 25° C lines and subsequently cultured at 29° C showed no evidence of significant divergence in the duration of any part of the pre-adult period. The geographic populations showed a decrease in the duration of larval development, and hence of the total pre-adult period, with increasing latitude. In both laboratory and field populations, evolution at lower temperature was associated with more rapid larval development to a larger adult body size, the opposite genetic correlation between these traits to that found within a single temperature. The indications are that lower temperatures may be permissive of more efficient growth in D. melanogaster. It will be important to discover if evolution in response to temperature induces similar correlations in other ectotherms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号