首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Aim: The aim of this study was to develop a multiplex real‐time PCR assay for the identification and discrimination of Erysipelothrix rhusiopathiae, tonsillarum and Erysipelothrix sp. strain 2 for direct detection of Erysipelothrix spp. from animal specimens. Methods and Results: A primer set and three species‐specific probes with different end labelling were designed from the noncoding region downstream of the 5S rRNA coding region. The sensitivity, specificity and repeatability of the assay were validated by analysing 27 Erysipelothrix spp. reference serotype strains and ten septicemia‐associated non‐Erysipelothrix spp. bacterial isolates. Cross‐reactivity with Erysipelothrix sp. strain 1 was not observed with any of the primer probe combinations. The detection limit was determined to be <10 colony forming units and as low as one genome equivalent per PCR . Further evaluation of the Erysipelothrix spp. multiplex PCR was performed by comparing an enrichment isolation culture method and a conventional differential PCR on 15 samples from pigs experimentally inoculated with Erysipelothrix spp. and 22 samples from pigs with suspected natural infection. Conclusion: The multiplex real‐time PCR assay was found to be simple, rapid, reliable, specific and highly sensitive. Significance and Impact of the Study: The developed real‐time multiplex PCR assay does not require cumbersome and lengthy cultivation steps prior to DNA extraction, obtained comparable results to enrichment isolation, and will be useful in diagnostic laboratories for rapid detection of Erysipelothrix spp.  相似文献   

4.
Significant plant pests such as fruit flies that travel with fresh produce between countries as eggs or larvae pose a great economic threat to the agriculture and fruit industry worldwide. Time‐limited and expensive quarantine decisions require accurate identification of such pests. Immature stages are often impossible to identify, making them a serious concern for biosecurity agencies. Use of COI barcoding PCR, often the only molecular identification resource, is time‐consuming. We assess the suitability of the COI barcoding region for real‐time PCR assays to identify four pest fruit fly species (Family: Tephritidae), in a diagnostic framework. These species, namely Mediterranean fruit fly (Ceratitis capitata), Queensland fruit fly (Bactrocera tryoni), African invader fly (Bactrocera invadens) and Island fly (Dirioxa pornia) each provide a different set of genetic species delimitation problems. We discuss the benefits and limitations of using a single‐gene TaqMan? real‐time approach for such species. Our results indicate that COI‐based TaqMan? real‐time PCR assays, in particular for genetically distinct species, provide an accurate, sensitive and rapid diagnostic tool.  相似文献   

5.
Cryphonectria parasitica, an ascomycete fungus, is the causal agent of chestnut blight. This highly destructive disease of chestnut trees causes significant losses, and is therefore a regulated pathogen in Europe. Existing methods for the detection of C. parasitica include morphological identification following culturing, or PCR; however, these are time‐consuming resulting in delays to diagnosis. To allow improved detection, a new specific real‐time PCR assay was designed to detect C. parasitica directly from plant material and fungal cultures, and was validated according to the European Plant Protection Organisation (EPPO) standard PM 7/98. The analytical specificity of the assay was tested extensively using a panel of species taxonomically closely related to Cryphonectria, fungal species associated with the hosts and healthy plant material. The assay was found to be specific to C. parasitica, whilst the analytical sensitivity of the assay was established as 2 pg µL?1 of DNA. Comparative testing of 63 samples of naturally infected plant material by the newly developed assay and traditional morphological diagnosis demonstrated an increased diagnostic sensitivity when using the real‐time PCR assay. Furthermore the assay is able to detect both virulent and hypovirulent strains of C. parasitica. Therefore the new real‐time PCR assay can be used to provide reliable, rapid, specific detection of C. parasitica to prevent the accidental movement of the disease and to monitor its spread.  相似文献   

6.
7.
Culicoides (Diptera: Ceratopogonidae) midges are the biological vectors of a number of arboviruses of veterinary importance. However, knowledge relating to the basic biology of some species, including their host‐feeding preferences, is limited. Identification of host‐feeding preferences in haematophagous insects can help to elucidate the transmission dynamics of the arboviruses they may transmit. In this study, a series of semi‐quantitative real‐time polymerase chain reaction (qPCR) assays to identify the vertebrate host sources of bloodmeals of Culicoides midges was developed. Two pan‐reactive species group and seven species‐specific qPCR assays were developed and evaluated. The assays are quick to perform and less expensive than nucleic acid sequencing of bloodmeals. Using these assays, it was possible to rapidly test nearly 700 blood‐fed midges of various species from several geographic locations in Australia.  相似文献   

8.
Aims: To validate a real‐time PCR test for the diagnosis of Glässer’s disease, a major pig disease caused by Haemophilus parasuis. Methods and Results: The specificity of a real‐time PCR amplifying the inf B gene was validated with 68 H. parasuis isolates and 36 strains of closely related species. As well, 239 samples of DNA from tissues and fluids of 16 experimentally challenged animals were tested with the real‐time PCR, and the results were compared with culture and a conventional PCR. The real‐time PCR produced significantly more positive results than the conventional PCR (165 vs 86). Conclusions: The sensitivity of the real‐time PCR combined with high specificity makes it a very valuable tool for the diagnosis of Glässer’s disease. Significance and Impact of Study: This new method will improve the ability of laboratories to diagnose Glässer’s disease, especially in laboratories where the culture method for H. parasuis is not optimal.  相似文献   

9.
10.
Aims: To develop a rapid, sensitive, specific tool for the detection and quantification of Lactococcus garvieae in food and environmental samples. Methods and Results: A real‐time quantitative PCR (qPCR) assay with primers for CAU12F and CAU12R based on the 16S rRNA gene of L. garvieae was successfully established. The limit of detection for L. garvieae genomic DNA was 1 ng DNA in conventional PCR and 32 fg with a mean CT value of 36·75 in qPCR. Quantification of L. garvieae vegetative cells was linear (R2 = 0·99) over a 7‐log‐unit dynamic range down to ten L. garvieae cells. Conclusions: This method is highly specific, sensitive and reproducible for the detection of L. garvieae compared to gel‐based conventional PCR assays, thus providing precise quantification of L. garvieae in food and natural environments. Significance and Impact of the Study: This work provides efficient diagnostic and monitoring tools for the rapid identification of L. garvieae, an emerging pathogen in aquaculture and an occasional human pathogen from other members of the genus Lactobacillus.  相似文献   

11.
Aims: The aim of this study was to develop a real‐time quantitative PCR test to recognize and quantify the DNA levels of the increasingly important barley pathogen Ramularia collo‐cygni. Methods and Results: The method described uses specifically designed primers and a molecular beacon probe based on an internal transcribed spacer (ITS) sequence. Pathogen extracted from barley leaves could be quantified to the picogram level in both leaves showing symptoms of infection and symptomless barley leaves. Conclusions: A relationship between R. collo‐cygni DNA levels and disease symptoms was established in spring barley under natural infection conditions. Significance and Impact of the Study: To our knowledge, this is the first report of a test of this type and makes an important contribution to studies into the life cycle of this pathogen.  相似文献   

12.
13.
14.
15.
16.

Aim

Create a method for highly sensitive, selective, rapid and easy‐to‐use detection and identification of economically significant potato pathogens, including viruses, bacteria and oomycetes, be it single pathogen, or a range of various pathogens occurring simultaneously.

Methods and Results

Test‐systems for real‐time PCR, operating in the unified amplification regime, have been developed for Phytophthora infestans, Pectobacterium atrosepticum, Dickeya dianthicola, Dickeya solani, Ralstonia solanacearum, Pectobacterium carotovorum, Clavibacter michiganensis subsp. sepedonicus, potato viruses Y (ordinary and necrotic forms as well as indiscriminative test system, detecting all forms), A, X, S, M, potato leaf roll virus, potato mop top virus and potato spindle tuber viroid. The test‐systems (including polymerase and revertase) were immobilized and lyophilized in miniature microreactors (1·2 μl) on silicon DNA/RNA microarrays (micromatrices) to be used with a mobile AriaDNA® amplifier.

Conclusions

Preloaded 30‐reaction micromatrices having shelf life of 3 and 6 months (for RNA‐ and DNA‐based pathogens, respectively) at room temperature with no special conditions were successfully tested on both reference and field samples in comparison with traditional ELISA and microbiological methods, showing perfect performance and sensitivity (1 pg).

Significance and Impact of the Study

The accurate, rapid and user‐friendly diagnostic system in a micromatrix format may significantly contribute to pathogen screening and phytopathological studies.  相似文献   

17.
18.
Aims: The goal of this study was to develop and to optimize molecular tools to detect the presence of Torque teno virus (TTV) in swine and cattle. A novel real‐time polymerase chain reaction (PCR) using a TaqMan probe was developed to detect both genogroups of TTV strains. Methods and Results: Oligonucleotide primers and hybridization probes were designed based on sequence analysis of the noncoding region, a highly conserved part of the genome. The real‐time PCR assay specifically detected bovine and porcine TTV DNA without cross‐amplification of other common pathogens. The assay was compared with conventional PCR and nested‐PCR assays for the detection of porcine genogroups 1 and 2 and bovine TTV on plasma and faecal samples, and the assay was found faster, more reliable and reduced the risk of false positive results. Conclusions: The real‐time PCR assay provided better detection results for the two TTV genogroups in both swine and cattle compared to the conventional PCR assays. Significance and Impact of the Study: This new TaqMan PCR assay will be a useful tool for the detection of animal TTV strains, to evaluate the viral load from animal host and finally to identify the presence of these viruses in the agri‐food continuum.  相似文献   

19.
Genetic modification of human mesenchymal stem cells (MSC) is a powerful tool to improve the therapeutic utility of these cells and to increase the knowledge on their regulation mechanisms. In this context, strong efforts have been made recently to develop efficient nonviral gene delivery systems. Although several studies addressed this question most of them use the end product of a reporter gene instead of the DNA uptake quantification to test the transfection efficiency. In this study, we established a method based on quantitative real‐time PCR (RT‐PCR) to determine the intracellular plasmid DNA copy number in human MSC after lipofection. The procedure requires neither specific cell lysis nor DNA purification. The influence of cell number on the RT‐PCR sensitivity was evaluated. The method showed good reproducibility, high sensitivity, and a wide linear range of 75–2.5 × 106 plasmid DNA copies per cell. RT‐PCR results were then compared with the percentage of transfected cells assessed by flow cytometry analysis, which showed that flow cytometry‐based results are not always proportional to plasmid cellular uptake determined by RT‐PCR. This work contributed for the establishment of a rapid quantitative assay to determine intracellular plasmid DNA in stem cells, which will be extremely beneficial for the optimization of gene delivery strategies. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
Aim: To develop and to validate a method for the quantification of Lawsonia intracellularis in porcine faeces by real‐time PCR. Methods and Results: A real‐time PCR including a calibrator based on plasmid DNA for quantification by means of ΔΔCt method was evaluated. The parameters specificity, detection limit, quantification limit, linearity, range, repeatability, precision and recovery were validated. The detection limit of the agent was 1 copy per reaction, and quantification was reliable between 101 and 107 copies per μl reaction volume. The linearity calculated by logistic regression revealed a slope of ?3·329 reflecting an efficiency of 99·7% for the assay. Moreover, it was shown that storage of samples and repetition of tests including DNA isolation by same or other investigators did not influence the outcome. Conclusion: The quantification method described herein revealed consistent results for the quantitation of L. intracellularis in porcine faeces samples. Significance and Impact of the Study: In contrast to common PCR in combination with gel electrophoresis, this validated quantification method based on real‐time PCR enhances a reliable quantification and is even more sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号