首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of “Fino”. This base wine was selected for “Fino” Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called “flor” yeasts. The “flor” velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a homogeneous, exceptional Sherry base wine for “Fino” Sherry production.  相似文献   

2.
The diversity and composition of yeast populations may greatly impact wine quality. This study investigated the yeast microbiota in two different types of wine fermentations: direct inoculation of a commercial starter versus pied de cuve method at an industrial scale. The pied de cuve fermentation entailed growth of the commercial inoculum used in the direct inoculation fermentation for further inoculation of additional fermentations. Yeast isolates were collected from different stages of wine fermentation and identified to the species level using Wallersterin Laboratory nutrient (WLN) agar followed by analysis of the 26S rDNA D1/D2 domain. Genetic characteristics of the Saccharomyces cerevisiae strains were assessed by a rapid PCR-based method, relying on the amplification of interdelta sequences. A total of 412 yeast colonies were obtained from all fermentations and eight different WL morphotypes were observed. Non-Saccharomyces yeast mainly appeared in the grape must and at the early stages of wine fermentation. S. cerevisiae was the dominant yeast species using both fermentation techniques. Seven distinguishing interdelta sequence patterns were found among S. cerevisiae strains, and the inoculated commercial starter, AWRI 796, dominated all stages in both direct inoculation and pied de cuve fermentations. This study revealed that S. cerevisiae was the dominant species and an inoculated starter could dominate fermentations with the pied de cuve method under controlled conditions.  相似文献   

3.
Molecular characterization of wine yeast population during spontaneous fermentation in biodynamic wines from Ribera del Duero D.O. located at northern plateau of Spain has been carried out during two consecutive years. A total of 829 yeast strains were isolated from the samples and characterized by electrophoretic karyotype. The results show the presence of three population of yeast differentiated by their electrophoretic karyotypes, (1) non-Saccharomyces yeast dominant in the initial phase of the fermentations (NS); (2) Saccharomyces bayanus var uvarum detected mainly mid-way through the fermentation process at 20–25 °C; and (3) Saccharomyces cerevisiae which remained dominant until the end of the fermentation. This is the first study showing the population dynamic of S. bayanus var. uvarum in red wines produced in Ribera del Duero that could represent an important source of autochthonous wine yeasts with novel oenological properties.  相似文献   

4.
Aims: A research was undertaken to explore the possibility to use Biolog system of microbial metabolic characterization for the monitoring of yeast population evolution during alcoholic fermentation for wine production. Methods and Results: An application of Biolog system was employed for the characterization of yeasts of oenological interest, in pure cultures and mixed consortia, in various cell concentrations. The system’s capacity to discriminate among different cell concentrations of the same yeast strain was ascertained, along with the capacity to discriminate between mixed and pure populations. Conclusions: The tested application of Biolog system resulted suitable for a quick recognition (24 h) of the presence of starter cultures within mixed populations of autochthonous yeasts. Such discrimination was confirmed with the one resulting from molecular techniques. Significance and Impact of the Study: The study suggests the possibility to employ Biolog system for an early monitoring of yeast evolution in modern wine‐making fermentations, where specialized yeasts are more and more frequently used as starters and their ability to overcome autochthonous yeast populations is crucial.  相似文献   

5.
AIMS: To differentiate nine industrial wine strains of Saccharomyces cerevisiae using microsatellite (simple sequence repeats, SSR) markers. METHODS AND RESULTS: Six of the strains were indigenous yeasts currently used as high-density starter monocultures by the Uruguayan wine industry. Unequivocal differentiation of these six native strains and three commercial S. cerevisiae wine strains was achieved by PCR amplification and polymorphism analysis of loci containing microsatellite markers. CONCLUSION: We recommend the use of this reproducible and simple molecular method to routinely discriminate wine yeast strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Microsatellites are superior to other methods for typing yeasts because the results can be exchanged as quantitative data. Knowledge of the frequencies of the alleles for different SSR markers will eventually lead to an accurate typing method to identify industrial wine yeast strains.  相似文献   

6.
Inoculation of active dry yeasts during the wine-making process has become a common practice in most wine-producing regions; this practice may affect the diversity of the indigenous population of Saccharomyces cerevisiae in the winery. The aim of this work was to study the incidence of commercial yeasts in the experimental winery of Estación de Viticultura e Enoloxía de Galicia (EVEGA) and their ability to lead spontaneous fermentations. To do this, 64 spontaneous fermentations were carried out in the experimental cellar of EVEGA over a period of 7 years. Samples were taken from must and at the beginning, vigorous and final stages of fermentation. A representative number of yeast colonies was isolated from each sample. S. cerevisiae strains were characterised by analysis of mitochondrial DNA restriction patterns. The results showed that although more than 40 different strains of S. cerevisiae were identified, only 10 were found as the dominant strain or in codominance with other strains in spontaneous fermentations. The genetic profiles (mtDNA-RFLPs) of eight of these strains were similar to those of different commercial yeasts that had been previously used in the EVEGA cellar. The remaining two strains were autochthonous ones that were able to reach implantation frequencies as high of those of commercial yeasts. These results clearly indicated that commercial wine yeasts were perfectly adapted to survive in EVEGA cellar conditions, and they successfully competed with the indigenous strains of S. cerevisiae, even during spontaneous fermentations. On the other hand, autochthonous dominant strains that presented desirable oenological traits could be of interest to preserve wine typicity.  相似文献   

7.
In this study we investigated yeast biodiversity and dynamics during the production of a sweet wine obtained from dried grapes. Two wineries were selected in the Collio region and grapes, grape juices and wines during fermentations were analyzed by culture-dependent methods (plating on WLN medium) and culture-independent methods (PCR-DGGE). Moreover, the capability of the Saccharomyces cerevisiae starter cultures to take over the fermentation was assessed by RAPD-PCR. On WLN agar several species of non-Saccharomyces yeasts (Hanseniaspora, Metschnikowia, Pichia, Candida, Torulaspora and Debaryomyces), but also strains of S. cerevisiae, were isolated. After inoculation of the starter cultures, only colonies typical of S. cerevisiae were observed. Using PCR-DGGE, the great biodiversity of moulds on the grapes was underlined, both at the DNA and RNA level, while the yeast contribution started to become important only in the musts. Here, bands belonging to species of Candida zemplinina and Hanseniaspora uvarum were visible. Lastly, when the S. cerevisiae isolates were compared by RAPD-PCR, it was determined that only in one of the fermentations followed, the inoculated strain conducted the alcoholic fermentation. In the second fermentation, the starter culture was not able to promptly implant and other populations of S. cerevisiae could be isolated, most likely contributing to the final characteristics of the sweet wine produced.  相似文献   

8.
AIMS: The purpose of this study was to select autochthonous glycosidase producer yeasts with potential use in industrial production of Patagonian red wines. METHODS AND RESULTS: The study was carried out in oenological autochthonous yeasts from Comahue region (Argentinean North Patagonia). A set of screenable yeast phenotypic characteristics indicative of their potential usefulness in more aromatic red wine production was defined and tested in both, Saccharomyces and non-Saccharomyces populations. Twelve isolates showing six different glycosidase phenotypes were selected and they were characterized at species and strain levels using molecular methods. A close correlation between molecular and phenotypic characteristics was observed. Five strains belonging to Candida guilliermondii, C. pulcherrima and Kloeckera apiculata with highest constitutive beta-glucosidase activity levels without anthocyanase activity were discriminated. Some of them also showed constitutive beta-xylosidase and inductive alpha-rhamnosidase activities. CONCLUSIONS: The extension of the selection of oenological yeast to non-Saccharomyces species provided strains possessing novel and interesting oenological characteristics which could have significant implications in the production of more aromatic young red wine. SIGNIFICANCE AND IMPACT OF THE STUDY: As these non-Saccharomyces are indigenous to wine, they can be used in mixed starters at the beginning or as pure cultures at the end fermentation to contribute in enhancing the wine nuance that is typical of this specific area.  相似文献   

9.
The composition of wine yeast populations, present during spontaneous fermentation of musts from two wine-producing areas of Greece (Amyndeon and Santorini) and followed for two consecutive years, were studied using a range of molecular techniques. Internal Transcribed Spacer (ITS) ribotyping was convincingly applied for yeast species identification, proving its usefulness as a reliable tool for the rapid characterization of species composition in yeast population studies. Restriction Fragment Length Polymorphism (RFLP) of mitochondrial DNA (mtDNA) was shown to be a convenient criterion for the detection of intraspecies genetic diversity of both Saccharomyces and non-Saccharomyces isolate populations. Similarly, polymorphism of amplified delta interspersed element sequences provided an additional criterion for S. cerevisiae strain differentiation. Comparative analysis of S. cerevisiae genetic diversity, using mtDNA restriction patterns and delta-amplification profiles, showed a similar discriminative power of the two techniques. However, by combining these approaches it was possible to distinguish/characterize strains of the same species and draw useful conclusions about yeast diversity during alcoholic fermentation. The most significant findings in population dynamics of yeasts in the spontaneous fermentations were (i) almost complete absence of non-S.cerevisiae species from fermentations of must originating from the island Santorini, (ii) a well recorded strain polymorphism in populations of non-Saccharomyces species originating from Amyndeon and (iii) an unexpected polymorphism concerning S. cerevisiae populations, much greater than ever reported before in similar studies with wine yeasts of other geographical regions.  相似文献   

10.
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.  相似文献   

11.
Sun  Yue  Li  Erhu  Qi  Xiaotao  Liu  Yanlin 《Annals of microbiology》2015,65(2):911-919
Mixed inoculation of Saccharomyces cerevisiae strains is used in winemaking for achieving high sensory quality of the wine. However, information on the diversity and population of yeasts during inoculated fermentation is very limited. In this study, we evaluated the effect of mixed inocula with different inoculation timing on the yeast community during fermentations of Cabernet Sauvignon. Grape must was inoculated with pure cultures of S. cerevisiae RC212 or S. cerevisiae R312, and simultaneous and sequential inoculation of both strains. Wallersterin Laboratory Nutrient (WLN) medium and sequence of the 26S rDNA D1/D2 domain were used to compare the diversity of yeast species. Five species, including Candida diversa, Hanseniaspora opuntiae, H. uvarum, Issatchenkia orientalis and I. terricola, were identified in the grape must, with Issatchenkia sp. being predominant (67.5 %). Three to four species were involved in each fermentation treatment. The fermentations by mixed inocula presented more yeast species than by pure inocula. Interdelta sequence typing was used to identify S. cerevisiae strains. Ten genotypes were identified among 322 isolated S. cerevisiae strains. Their distribution varied among different stages of fermentations and different inoculation treatments. The inoculated strains were not predominant, while indigenous genotypes I, III, and V showed strong competitiveness during fermentation. In general, this study provided information on the change of population structure and genetic diversity of yeasts in fermentations inoculated with pure and mixed S. cerevisiae strains.  相似文献   

12.
This work describes the influence of yeast population on the chemical characteristics of wine obtained by spontaneous and inoculated fermentation of must from Vitis vinifera Lado, a minor white grapevine autochthonous to Galicia (NW Spain). The study was carried out for two consecutive years. The results showed that musts derived from Lado presented a high acidity though the potential alcohol level was acceptable. The genetic diversity of S. cerevisiae strains isolated from spontaneous fermentations was low, probably due to must characteristics, although these did not interfere with the implantation of the commercial strains used. Analyses showed that the wines subsequently produced had high alcoholic levels and very high acidities (pH 3.0) as was expected from must composition. Wines obtained from spontaneous fermentations had a lower alcohol content but higher total acidity than those from inoculated fermentations. Monovarietal wines produced from Lado were poorly evaluated in sensorial tests because of their unbalanced structure and sourness; however, when they were mixed with other autochthonous white varieties with less acidity, the resulting wines were well accepted.  相似文献   

13.
Aims: Analysis of the diversity and distribution of wine yeasts isolated from organically and conventionally grown grapes, and during the subsequent fermentation with or without starter cultures in six different commercial wineries. Methods and Results: PCR‐RFLP screening of isolates revealed the involvement of ten different species. Saccharomyces cerevisiae, scarcely isolated from grapes, was the dominant species during the latter phases of fermentation, identifying 108 different genotypes by means of SSR analysis. Species and strains’ diversity and presence were strongly influenced by the farming system used to grow the grapes and the system of vinification. Conclusions: Organic farming management was more beneficial in terms of diversity and abundance than the conventional one. Induced fermentation generated a great replacement of native yeasts. Although winery‐resident yeasts resulted to be predominant in the process, some noncommercial strains originally in the vineyard were found in final stages of the fermentation, confirming that autochthonous strains of S. cerevisiae are capable to conduct the fermentation process up to its end. Significance and Impact of the Study: The study of natural yeast communities from commercial vineyards and wineries is an important step towards the preservation of native genetic resources. Our results have special relevance because it is the first time that the real situation of the yeast ecology of alcoholic fermentation in commercial wineries belonging to the relevant wine‐producing Appellation of Origin ‘Vinos de Madrid’ is shown.  相似文献   

14.
The multi-yeast strain composition of wine fermentations has been well established. However, the effect of multiple strains of Saccharomyces spp. on wine flavour is unknown. Here, we demonstrate that multiple strains of Saccharomyces grown together in grape juice can affect the profile of aroma compounds that accumulate during fermentation. A metabolic footprint of each yeast in monoculture, mixed cultures or blended wines was derived by gas chromatography - mass spectrometry measurement of volatiles accumulated during fermentation. The resultant ion spectrograms were transformed and compared by principal-component analysis. The principal-component analysis showed that the profiles of compounds present in wines made by mixed-culture fermentation were different from those where yeasts were grown in monoculture fermentation, and these differences could not be produced by blending wines. Blending of monoculture wines to mimic the population composition of mixed-culture wines showed that yeast metabolic interactions could account for these differences. Additionally, the yeast strain contribution of volatiles to a mixed fermentation cannot be predicted by the population of that yeast. This study provides a novel way to measure the population status of wine fermentations by metabolic footprinting.  相似文献   

15.
AIMS: To study the diversity and dynamics of indigenous Saccharomyces wine populations during Malbec spontaneous fermentation, a representative Patagonian red wine, at both industrial and laboratory scale. METHODS AND RESULTS: Two molecular techniques, including restriction fragment length polymorphism of mitochondrial (mt) DNA and polymorphism of amplified delta interspersed element sequences, were used for characterization of indigenous yeasts at strain level. The mtDNA restriction patterns showed the major discriminative power; however, by combining the two molecular approaches it was possible to distinguish a larger number of strains and, therefore, draw more representative conclusions about yeast diversity. Although a great diversity of wild Saccharomyces cerevisiae strains was observed, only nine represented more than half of the total Saccharomyces yeast biota analysed; five of these were common and took over the Malbec must fermentation in both vinifications. CONCLUSIONS: Many different indigenous S. cerevisiae strains were identified; nevertheless, the dominant strains in both industrial and laboratory vinification processes were just a few and the same. SIGNIFICANCE AND IMPACT OF THE STUDY: Small-scale fermentation appears to be a valuable tool in winemaking, one especially helpful in evaluating microbiological aspects of as well as possible interactions between inoculated selected strains and native strains.  相似文献   

16.
《Fungal biology》2022,126(10):658-673
In northwestern Argentina, sugarcane-derived industrial fermentation is being extensively used for bioethanol production, where highly adaptive native strains compete with the baker's yeast Saccharomyces cerevisiae traditionally used as starter culture. Yeast populations of 10 distilleries from Tucumán (Argentina) were genotypic and phenotypic characterized to select well-adapted bioethanol-producing autochthonous strains to be used as starter cultures for the industrial production of bioethanol fuel. From the 192 isolates, 69.8% were identified as S. cerevisiae, 25.5% as non-Saccharomyces, and 4.7% as Saccharomyces sp. wild yeasts. The majority of S. cerevisiae isolates (68.5%) were non-flocculating yeasts, while the flocculating strains were all obtained from the only continuous fermentation process included in the study. Simple Sequence Repeat analysis revealed a high genetic diversity among S. cerevisiae genotypes, where all of them were very different from the original baker's strain used as starter. Among these, 38 strains multi-tolerant to stress by ethanol (8%), temperature (42.5 °C) and pH (2.0) were obtained. No major differences were found among these strains in terms of ethanol production and residual sugars in batch fermentation experiments with cell recycling. However, only 10 autochthonous strains maintained their viability (more than 80%) throughout five consecutive cycles of sugarcane-based fermentations. In summary, 10 autochthonous isolates were found to be superior to baker's yeast used as starter culture (S. cerevisiae Calsa) in terms of optimal technological, physiological and ecological properties. The knowledge generated on the indigenous yeast populations in industrial fermentation processes of bioethanol-producing distilleries allowed the selection of well-adapted bioethanol-producing strains.  相似文献   

17.
Yeast diversity and persistence in botrytis-affected wine fermentations   总被引:1,自引:0,他引:1  
Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected ("botrytized") wine fermentations carried out at high ( approximately 30 degrees C) and ambient ( approximately 20 degrees C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by SACCHAROMYCES: In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>10(6) cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of CANDIDA: Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations.  相似文献   

18.
Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 x 10(-5) to 3 x 10(-5) per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis.  相似文献   

19.
AIMS: The wide use of yeast inoculum for wine fermentations permit the spreading of commercial Saccharomyces strains in wine areas all over the world. To study the impact of this practice on the autochthonous yeast populations it is necessary to have tools that permit the evaluation of the geographical origin of native isolates and differentiate them from commercial strains. METHODS AND RESULTS: Electrophoretic karyotyping and mitochondrial DNA restriction analysis were used to characterize the genome of native S. cerevisiae isolates associated to wine from three countries in South America. Both methods revealed differences in the genomic structure between these populations, in addition to differences between sub-populations collected in wine-producing areas in Chile. CONCLUSIONS: Our data support that molecular polymorphism analysis may be useful to evaluate the geographical origin of native isolates of yeast strains for industrial use. Furthermore, these findings are in agreement with the idea of a clonal mode of reproduction of wine yeasts in natural environments. SIGNIFICANCE AND IMPACT OF THE STUDY: This study permits the characterization of native yeast isolates in relation to their geographical origin. This procedure could be used as a tool for evaluating if a native isolate derives from the region were it was collected or if it is a strain derived from a commercial strain by microevolution.  相似文献   

20.
The use of commercial wine yeast strains as starters has grown extensively over the past two decades. In this study, a large-scale sampling plan was devised over a period of 3 years in three different vineyards in the south of France, to evaluate autochthonous wine yeast biodiversity in vineyards around wineries where active dry yeasts have been used as fermentation starters for more than 5 years. Seventy-two spontaneous fermentations were completed from a total of 106 grape samples, and 2160 colonies were isolated. Among these, 608 Saccharomyces strains were identified and 104 different chromosomal patterns found. The large majority of these (91) were found as unique patterns, indicating great biodiversity. There were differences in biodiversity according to the vineyard and year, showing that the biodiversity of Saccharomyces strains is influenced by climatic conditions and specific factors associated with the vineyards, such as age and size. Strains that were terroir yeast candidates were not found. The biodiversity of S. cerevisiae strains after harvest was similar to that in the early campaign; moreover, a temporal succession of S. cerevisiae strains is shown. This fact, together with the differences in biodiversity levels verifies that other factors were more important than commercial yeast utilization in the biodiversity of the vineyard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号