首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larval water mites are parasites of various insect species. The main aim of the present study was to analyse the host range of spring dwelling water mites. The investigation focuses on seven spring sites in Luxembourg. Some 24 water mite species were recorded either from the benthos or as parasites attached to flying insects captured in emergence traps. For 20 mite species 35 host species from four Nematocera (Diptera) families were recorded. About 80% of the host species and over 90% of the host individuals were Chironomidae, the others were Limoniidae, Dixidae and Simuliidae. For all water mite species recorded we present the observed host spectrum and/or potential hosts as well as the intensity of parasitism and the phenology of the mites. For 10 mite species the hosts were previously unknown. For another ten species the known host spectrum can be confirmed and extended. The host spectrum ranged from one host species (e.g. for Sperchon insignis) to at least 10 host species (for Sperchon thienemanni, Ljania bipapillata), but the effective host range could not be definitively estimated due to the lack of corresponding data. The hypothesised host preference of the water mites, of which most are strictly confined to spring habitats, for similarly spring-preferring hosts could not be proven. The mean intensity of parasitism was highest for Thyas palustris (10.8 larvae/host) and lowest for Sperchon insignis and Hygrobates norvegicus (1.2 larvae per host for each). The hydryphantid mite Thyas palustris occurred at maximal intensity (41 larvae per host) and the two abdominal parasites Ljania bipapillata and Arrenurus fontinalis showed higher mean intensities than the thoracic parasites did. Larval water mites parasitising chironomids did not exhibit a preference for host sex. The phenology of the larval mite species was varied, some species were only present in samples early in the year and others exclusively in the summer. Another species showed two peaks of occurrence, springtime/early summer and late summer/autumn. In conclusion, the water mite larvae in the studied springs showed differences in host spectra and phenology but there are no clear evidences in both for host partitioning. Maybe, the relative low species diversity of water mites in individual springs and the low inter-specific competition for suitable hosts in combination with the high host abundances and species richness makes springs such favourable habitats for the mites.  相似文献   

2.
Changes in the timing of life history events within the year alter the degree to which the activity patterns of different species coincide, making the dynamics of interspecific interactions sensitive to the phenology of the interacting parties. For parasites, the availability of suitable hosts to infect represents a crucial determinant of dynamics, and changes in the host (and parasite) phenology may thus alter disease epidemiology and the conditions for disease maintenance. We tested the hypothesis that the incidence of a sexually transmitted mite infection, Coccipolipus hippodamiae, in Adalia bipunctata ladybird beetles in Sweden was determined by host phenology, namely presence/absence of sexual contact between cohorts of the host. We observed that the pattern of mite presence/absence across Swedish A. bipunctata populations was highly reproducible between years, implying a persistent biological/ecological basis underlying the incidence. Further, ladybirds from populations where the mite was absent were able to acquire mites during copulation, develop a mite infection, and transmit infection onward, indicating an ecological (rather than biological) driver of mite incidence. Observations of ladybird phenology in natural populations provided evidence of sexual contact between overwintered and new cohort adults in populations where the mite was present. In contrast, new cohort ladybirds in the two northern Swedish populations where the mite was not present had not had sexual contact with the overwintered generation, creating a ‘hard stop’ to mite transmission. We conclude that variation in host phenology may be an important driver of the incidence of sexually transmitted infections (STIs) by determining the presence/absence of sexual contact between generations. More generally, we hypothesize that sensitivity to variation in host phenology will be highest for parasites like STIs that infect one host species, one host life stage and are directly transmitted on contact between host individuals.  相似文献   

3.
The tropical fowl mite Ornithonyssus bursa parasitizing barn swallows Hirundo rustica in a Danish population demonstrated a dramatic change in abundance during 1982–2000. Prevalence of mites in nests showed a decrease from 66% in 1987 to a minimum of 1% in 1999. Two parasite manipulation experiments of barn swallow nests in 1988 and 1999 revealed a strong effect of parasites on host reproductive success in the first year (with an average reduction in seasonal reproductive success of 30% when 50 mites were added to nests as compared with controls), but only a weak effect the last year. This pattern was paralleled by a positive relationship between reduction in host reproductive success between egg laying and fledging and mite prevalence during different years of the study period. Mite abundance on adult hosts was negatively related to tail length of males (a secondary sexual character) at the peak of mite abundance in 1988, while that relationship became weaker in the beginning of the 1990s and disappeared at the end of the 1990s. Assortative mating with respect to mite loads in the 1980s also disappeared in the 1990s. Mean tail length of male hosts increased by 1.3 standard deviations during the study period because of changes in phenotype‐dependent patterns of mortality outside the breeding season. This microevolutionary change in mean male phenotype of the host was accompanied by a correlated response in mite abundance. These results are consistent with the hypothesis that the host has become more resistant to the mite during the study period, and that the mite from earlier playing an important role in natural and sexual selection of the host now is of little importance.  相似文献   

4.
Summary Unionicolid water mites inhabit freshwater unionid mussels during the nymphal and adult stages of their life-cycle. Regular sampling of mussels from two sites in St. Mark's River, Fl. established that each of four species of water mite (Unionicola abnormipes, U. fossulata, U. serrata and U. formosa) occurred mainly in one or two of the mussel species available at each site.The role of preference for particular mussel species during host location was assessed for the first three mite species by choice experiments, in which mites were offered different mussel species simultaneously. In five out of six experiments, mites entered normally unused mussels as often as they did normally used ones. Additionally, a sexual difference in choice was found for U. fossulata, with males preferring one mussel species and females showing no preference. One mussel species, (Anodonta imbecilis), normally unused but chosen by mite species during the lab. experiments, is inhabited exclusively by the fourth mite species, U. formosa, in the field. An experiment showed that U. formosa excludes other mite species aggressively from Anodonta imbecilis.The results illustrate the sometimes misleading nature of simple sampling data as an indication of host specificity or host preference in parasites. They suggest also that the population dynamics of some parasites might be more fruitfully compared to unrelated, free-living species than to other parasites.  相似文献   

5.
1. Parasites can affect the communities of their hosts; and hosts, in turn, shape communities of parasites and other symbionts. This makes host–symbiont relationships a key but often overlooked aspect of community ecology. 2. Mites associated with bees have a range of lifestyles; however, little is known about mites associated with wild bees or about factors influencing the make‐up of bee‐associated mite communities. This study investigated how mite communities associated with bumble bees (Bombus spp.) are shaped by the Bombus community and geographic proximity. 3. Bees were collected from 15 sites in Ontario, Canada, and examined for mites. Mite abundance and species richness increased with local bee abundance. Several bee species also differed in mite abundance, species richness, prevalence, and diversity. Locally uncommon species tended to have more mites than other bees. Queen bees had the most mites, and males had more mites than workers. 4. Spatial proximity was not a predictor of mite community composition, despite a strong effect of proximity on bee community similarity. 5. On the 11 Bombus spp. examined, 33 mite species were found. Whereas nearly half of these mite species are obligate associates of bumble bees, none was restricted to particular Bombus species. 6. The best predictor of mite community composition was bee identity. Although many parasite communities show strong geographic patterns, the communities of primarily commensalistic bee‐mites in this study did not. These findings have implications for bumble bee conservation, given that pollen‐feeding commensals might become harmful at high densities or act as disease vectors.  相似文献   

6.
The diversity of symbionts (commensals, mutualists or parasites) that share the same host species may depend on opportunities and constraints on host exploitation associated with host phenotype or environment. Various host traits may differently influence host accessibility and within‐host population growth of each symbiont species, or they may determine the outcome of within‐host interactions among coexisting species. In turn, phenotypic diversity of a host species may promote divergent exploitation strategies among its symbiotic organisms. We studied the distribution of two feather mite species, Proctophyllodes sylviae and Trouessartia bifurcata, among blackcaps Sylvia atricapilla wintering in southern Spain during six winters. The host population included migratory and sedentary individuals, which were unequally distributed between two habitat types (forests and shrublands). Visual mite counts showed that both mite species often coexisted on sedentary blackcaps, but were seldom found together on migratory blackcaps. Regardless of host habitat, Proctophyllodes were highly abundant and Trouessartia were scarce on migratory blackcaps, but the abundance of both mite species converged in intermediate levels on sedentary blackcaps. Coexistence may come at a cost for Proctophyllodes, whose load decreased when Trouessartia was present on the host (the opposite was not true). Proctophyllodes load was positively correlated with host wing length (wings were longer in migratory blackcaps), while Trouessartia load was positively correlated to uropygial gland size (sedentary blackcaps had bigger glands), which might render migratory and sedentary blackcaps better hosts for Proctophyllodes and Trouessartia, respectively. Our results draw a complex scenario for mite co‐existence in the same host species, where different mite species apparently take advantage of, or are constrained by, divergent host phenotypic traits. This expands our understanding of bird–mite interactions, which are usually viewed as less dynamic in relation to variation in host phenotype, and emphasizes the role of host phenotypic divergence in the diversification of symbiotic organisms.  相似文献   

7.
Recurring species interactions can cause species to adapt to each other. Specialization will increase the fitness of symbionts in the coevolved association but may reduce the flexibility of symbiont choice as it will often decrease fitness in interactions with other than the main symbiont species. We analyzed the fitness interactions between a complex of two cryptic mite species and their sympatric burying beetle hosts in a European population. Poecilochirus mites (Mesostigmata, Parasitidae) are phoretic on burying beetles and reproduce alongside beetles, while these care for their offspring at vertebrate carcasses. While Poecilochirus carabi is typically found on Nicrophorus vespilloides beetles, P. necrophori is associated with N. vespillo. It has long been known that the mites discriminate between the two beetle species, but the fitness consequences of this choice remained unknown. We experimentally associated both mite species with both beetle species and found that mite fitness suffered when mites reproduced alongside a nonpreferred host. In turn, there is evidence that one of the beetle species is better able to cope with the mite species they are typically associated with. The overall fitness effect of mites on beetles was negative in our laboratory experiments. The Poecilochirus mites studied here are thus specialized competitors or parasites of burying beetles.  相似文献   

8.
In this study, we tested which host species’ characteristics explain the nature and level of parasitism for host damselfly (Coenagrionidae)–water mite (Arrenuridae) parasite associations. Prevalence and intensity of mite parasites, and mite species richness were examined in relation to geographic range size, regional occurrence, relative local abundance, phenology and body size of host damselfly species. A total of 7107 damselfly individuals were collected representing 16 species from 13 sites in southeastern Ontario and southwestern Quebec, Canada. Using comparative methods, differences in prevalence and intensity of parasitism could be predicted by a host species’ geographic range and phenology. Barcoding based on Cytochrome Oxidase I revealed 15 operational taxonomic units (OTUs) for mite species. The number of mite OTUs known to infest a given host species was explained by a host species’ regional occurrence. Our findings demonstrate the need to measure factors at several ecological scales in order to understand the breadth of evolutionary interactions with host–parasite associations and the selective ‘milieu’ for particular species of both hosts and parasites.  相似文献   

9.
Feather mites are obligatory ectosymbionts of birds that primarily feed on the oily secretions from the uropygial gland. Feather mite abundance varies within and among host species and has various effects on host condition and fitness, but there is little consensus on factors that drive variation of this symbiotic system. We tested hypotheses regarding how within‐species and among‐species traits explain variation in both (1) mite abundance and (2) relationships between mite abundance and host body condition and components of host fitness (reproductive performance and apparent annual survival). We focused on two closely related (Parulidae), but ecologically distinct, species: Setophaga cerulea (Cerulean Warbler), a canopy dwelling open‐cup nester, and Protonotaria citrea (Prothonotary Warbler), an understory dwelling, cavity nester. We predicted that feather mites would be more abundant on and have a more parasitic relationship with P. citrea, and within P. citrea, females and older individuals would harbor greater mite abundances. We captured, took body measurements, quantified feather mite abundance on individuals’ primaries and rectrices, and monitored individuals and their nests to estimate fitness. Feather mite abundance differed by species, but in the opposite direction of our prediction. There was no relationship between mite abundance and any measure of body condition or fitness for either species or sex (also contrary to our predictions). Our results suggest that species biology and ecological context may influence mite abundance on hosts. However, this pattern does not extend to differential effects of mites on measures of host body condition or fitness.  相似文献   

10.
Some symbiotic taxa may have evolved to track changes in the level and quality of food resources provided by the host to increase reproduction and dispersal. As a consequence, some ectosymbionts synchronize their reproduction and activity with particular stages of their host's living cycle. In this article we examined temporal patterns of variation in prevalence and abundance of feather mites living on pre‐migratory barn swallows Hirundo rustica. Feather mites in the lineages Pterolichoidea and Analgoidea are the most common arthropod ectosymbionts living at the expenses of feather oil. We investigated whether the seasonal variations in levels of several measures of physiological condition associated with host migration were related to changes in prevalence and abundance of mites. The results suggest that the variation in prevalence of feather mites, and thus probably the mode of acquisition and dispersal of these symbionts, is linked to an increase in host sociality before migration. Physiological dynamics of hosts after the breeding season point at two clearly identifiable periods: a post‐breeding period when physiological condition remains stationary or decreases, and a pre‐migratory period characterized by a rapid increase in several measures of physiological condition. Mite population dynamics were synchronized with migratory disposition during the period of highest host gregariousness. These synchronized processes occurred in both study years, although dynamics of migratory disposition and mite prevalence and abundance differ somewhat between years for adult and juvenile hosts. Mite population increase before host migration may be a response to a higher quantity of food provided by the host, namely oil from the urpoygial gland which is stimulated by hormones. Therefore, mites might have evolved to adjust their reproduction to the time when they have more chance of dispersal through horizontal transmission. In addition, body mass of juvenile and adult hosts were positively related with mite abundance in both years after allowing for several influencing factors. Body mass variation may reflect adequately fitness of host or their current physiological state, for instance, differences in the secretion of lipids on feathers or a more adequate microclimate to these symbionts.  相似文献   

11.
Feather mites are arthropods that live on or in the feathers of birds, and are among the commonest avian ectosymbionts. However, the nature of the ecological interaction between feather mites and birds remains unclear, some studies reporting negative effects of feather mites on their hosts and others reporting positive or no effects. Here we use a large dataset comprising 20 189 measurements taken from 83 species of birds collected during 22 yr in 151 localities from seven countries in Europe and North Africa to explore the correlation between feather mite abundance and body condition of their hosts. We predicted that, if wing‐dwelling feather mites are parasites, a negative correlation with host body condition should be found, while a mutualistic interaction should yield positive correlation. Although negative relationships between feather mite abundance and host body condition were found in a few species of birds, the sign of the correlation was positive in most bird species (69%). The overall effect size was only slightly positive (r =0.066). The effect of feather mite abundance explained <10% of variance in body condition in most species (87%). Results suggest that feather mites are not parasites of birds, but rather that they hold a commensalistic relationship where feather mites may benefit from feeding on uropygial gland secretions of their hosts and birds do not seem to obtain a great benefit from the presence of feather mites.  相似文献   

12.
The role of environmental and host‐associated factors in synchronization of host–parasite life‐cycles is an important question of evolutionary ecology. Yet, only handsome of studies examined this question at the intraspecific level. Here we explore how host‐associated traits, such as breeding phenology and host breeding habitat, can influence parasite phenology and co‐occurrence at different spatial scales. We studied the system comprised of a generalist ectoparasitic fly Carnus hemapterus and one of its avian hosts, the European roller Coracias garrulus. Inter‐annual variation in phenology was larger for parasites than hosts. Host predictability in terms of occurrence and phenological regularity was moderate, suggesting that this resource can be difficult to be tracked by the parasite. A large proportion of flies consistently emerged before the appearance of suitable host resources at both the nest and population level. Consequently, we revealed low and highly variable inter‐annual host–parasite synchronization rates. Nevertheless, we found that parasites from nests of early and progressively earlier breeding European rollers were more synchronized with their hosts than parasites from nests of late and progressively later breeding hosts, respectively. Temporal trends in host suitability and parasite emergence at the population scale suggest that other mechanisms, such as dispersal or exploitation of other host species, ensure parasites access to resources and counteract asynchrony with the host at the nest scale.  相似文献   

13.
Together 22,119 individuals and 47 species of mesostigmatic mites, and 485 individuals of fleas belonging to 6 species were obtained from 16 winter nests of mound-building mouse, Mus spicilegus. The most abundant mite species were Laelaps algericus (38.2%), Androlaelaps fahrenholzi (20.9%), Proctolaelaps pygmaeus (16.9%) and Alliphis halleri (8.3%). Ctenophthalmus assimilis (87%) was the highly predominant flea, present in all the positive nests. On the basis of trophic and topic relations, mites were assorted into four ecological groups; parasites had the highest abundance (67% of all individuals). The density peak values of individual ecological mite groups differed the during season. The population peak of the predominant mite species L. algericus was in December, predominance of females was registered throughout the study period. The maximum abundance of fleas was reported in January and May.  相似文献   

14.
  • 1 Recently, Hughes et al. (Trends in Ecology & Evolution, 23 , 672–677, 2008) have theorised that symbionts of large, long‐lived, homeostatic, and well defended social insect colonies should mostly be of low virulence. If the symbionts are rare, i.e. few workers are co‐infected, competition between symbionts should be minimal and they should be selected to avoid over‐exploiting their hosts.
  • 2 Here we analyse the mites that occur on Eciton burchellii army ant workers and note that our findings are consistent with the predictions from evolutionary theory.
  • 3 The mites were species diverse but rare; only 5% of the 3146 workers we examined from 20 army ant colonies had mites. Only one worker was co‐infected by mites of different species and the one relatively common parasitic mite (Rettenmeyerius carli) was limited to only two individuals per ant.
  • 4 We also showed that certain mites are more common on workers in nomadic rather than statary army ant colonies and that different worker castes differed in their infestation patterns.
  • 5 We suggest that the three traits E. burchellii and honey bees (Apis mellifera) have in common (queens with very high mating frequencies, propagation by colony fission, and low number of parasites among the mite species they host) are associated with one another. Colonies that fission are likely to inherit symbionts and multiple mating will promote genetic diversity within colonies, which may help to limit the abundance of deleterious mites.
  • 6 We conclude that most of the symbiotic mites found on workers of the army ant E. burchellii are probably relatively harmless guests, exploiting their hosts for phoresis or, for example, to use their waste deposits.
  相似文献   

15.
Climatic effects on breeding phenology vary across organisms and therefore might promote a phenological mismatch in ecologically interacting species, including those engaged in coevolutionary interactions such as brood parasites and their hosts. Recent studies suggest that climatic induced changes in migration phenology may have mismatched cuckoos and their hosts in Europe. However, it is currently unknown whether cuckoo–host phenological mismatch results from different degrees of phenotypic plasticity or to different speeds of microevolutionary processes affecting hosts and parasites. Here we performed 1) cross‐sectional correlations between climate conditions and population level of phenological mismatch between the migratory brood parasite great spotted cuckoo Clamator glandarius and its main resident host in Europe, the magpie Pica pica; and 2) a longitudinal analysis to study within‐individual variation in breeding phenology for individual hosts experiencing different climate conditions over a period of nine years (2005–2013). Cross‐sectional analyses revealed independent and contrary effects of winter and spring temperature on magpie phenology: magpie hosts tend to breed earlier those years with lower February temperatures, however, high temperature in the first half of April spur individuals to lay eggs. Breeding phenology of cuckoos was tuned to that of their magpie host in time and duration. However, annual phenological mismatch between cuckoos and magpie hosts increased with NAO index and January temperature. Longitudinal analyses revealed high individual consistency in magpie host phenology, but a low influence of climate, suggesting that the climatic‐driven phenological mismatch between cuckoos and magpies at the population‐level cannot be explained by a host plastic response to climatic conditions.  相似文献   

16.
Host‐associated organisms (e.g., parasites, commensals, and mutualists) may rely on their hosts for only a portion of their life cycle. The life‐history traits and physiology of hosts are well‐known determinants of the biodiversity of their associated organisms. The environmental context may strongly influence this interaction, but the relative roles of host traits and the environment are poorly known for host‐associated communities. We studied the roles of host traits and environmental characteristics affecting ant‐associated mites in semi‐natural constructed grasslands in agricultural landscapes of the Midwest USA. Mites are frequently found in ant nests and also riding on ants in a commensal dispersal relationship known as phoresy. During nonphoretic stages of their development, ant‐associated mites rely on soil or nest resources, which may vary depending on host traits and the environmental context of the colony. We hypothesized that mite diversity is determined by availability of suitable host ant species, soil detrital resources and texture, and habitat disturbance. Results showed that that large‐bodied and widely distributed ant species within grasslands support the most diverse mite assemblages. Mite richness and abundance were predicted by overall ant richness and grassland area, but host traits and environmental predictors varied among ant hosts: mites associated with Aphaenogaster rudis depended on litter depth, while Myrmica americana associates were predicted by host frequency and grassland age. Multivariate ordinations of mite community composition constructed with host ant species as predictors demonstrated host specialization at both the ant species and genus levels, while ordinations with environmental variables showed that ant richness, soil texture, and grassland age also contributed to mite community structure. Our results demonstrate that large‐bodied, locally abundant, and cosmopolitan ant species are especially important regulators of phoretic mite diversity and that their role as hosts is also dependent on the context of the interaction, especially soil resources, texture, site age, and area.  相似文献   

17.
Microorganisms provide many physiological functions to herbivorous hosts. Spider mites (genus Tetranychus) are important agricultural pests throughout the world; however, the composition of the spider mite microbial community, especially gut microbiome, remains unclear. Here, we investigated the bacterial community in five spider mite species and their associated feces by deep sequencing of the 16S rRNA gene. The composition of the bacterial community was significantly different among the five prevalent spider mite species, and some bacterial symbionts showed host‐species specificity. Moreover, the abundance of the bacterial community in spider mite feces was significantly higher than that in the corresponding spider mite samples. However, Flavobacterium was detected in all samples, and represent a “core microbiome”. Remarkably, the maternally inherited endosymbiont Wolbachia was detected in both spider mite and feces. Overall, these results offer insight into the complex community of symbionts in spider mites, and give a new direction for future studies.  相似文献   

18.
Parasites can have strong effects on host life-history and behaviour, and result in changes in host population dynamics and community structure. We applied a PCR-based technique and examined prevalence of malaria and related haemosporidian parasites in two arctic breeding shorebird species: the Semipalmated Sandpiper (Calidris pusilla) and the Pectoral Sandpiper (C. melanotos). During the non-breeding season, Semipalmated Sandpipers inhabit coastal marine habitats, whereas Pectoral Sandpipers are found in inland areas. In accordance with the hypothesis that the risk of parasite infection is higher in a species wintering in freshwater areas, we found Plasmodium sp. infection during the breeding season only in Pectoral Sandpipers, whereas Semipalmated Sandpipers were parasite free. However, even in Pectoral Sandpipers sampled in the arctic, prevalence of malaria parasites was very low (<3% of individuals, n = 114). Overall, three different Plasmodium sp. lineages were found, one of which has never been described before.  相似文献   

19.
1. Variation in immune responsiveness within and among species is the subject of the emerging field of ecological immunology. The work reported here showed that individuals of Lestes forcipatus Rambur differ in their likelihood of mounting immune responses, and in the magnitude of those responses, against a generalist ectoparasite, the water mite Arrenurus planus Marshall. 2. Immune responses took the form of melanotic encapsulation of mite feeding tubes, occurred in the few days after host emergence, and resulted in mites dying without engorging. Such immune responses were more probable and stronger for hosts sampled later rather than earlier in the season. Such responses may act as selection affecting seasonal patterns of egg hatching and larval abundance of mites. 3. Contrary to expectation, metrics of host size (wing length) and wing cell fluctuating asymmetry were not related to the likelihood of immune responses. 4. The importance of season on immune expression of insects has not been explored in detail. These results suggest possible trade‐offs in allocation of melanin (or its precursors) to maturation versus immunity, and indicate the need for studies on the synergistic effects of weather and parasitism on host species that use melanotic encapsulation to combat parasites and pathogens.  相似文献   

20.
Fitness consequences of ectoparasitism are expressed over the lifetime of their hosts in relation to variation in composition and abundance of the entire ectoparasite community and across all host life history stages. However, most empirical studies have focused on parasite species-specific effects and only during some life history stages. We conducted a systematic, year-long survey of an ectoparasite community in a wild population of house finches Carpodacus mexicanus Müller in south-western Arizona, with a specific focus on ecological and behavioral correlates of ectoparasite prevalence and abundance. We investigated five ectoparasite species: two feather mite genera – both novel for house finches – Strelkoviacarus (Analgidae) and Dermoglyphus (Dermoglyphidae), the nest mite Pellonyssus reedi (Macronyssidae), and the lice Menacanthus alaudae (Menoponidae) and Ricinus microcephalus (Ricinidae). Mite P. reedi and louse Menacanthus alaudae abundance peaked during host breeding season, especially in older birds, whereas feather mite abundance peaked during molt. Overall, breeding birds had more P. reedi than non-breeders, molting males had greater abundance of feather mites than molting females and non-molting males, and young males had more feather mites than older males. We discuss these results in relation to natural history of ectoparasites under study and suggest that ectoparasites might synchronize their life cycles to those of their hosts. Pronounced differences in relative abundance of ectoparasite species among host's life history stages have important implications for evolution of parasite-specific host defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号