首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The toxic and nutrient poor ultrabasic rock substrate covering one-third of New Caledonia greatly influenced on the biogeography and diversity of plants in the island. Studies on the effect of ultrabasic substrate on fauna are almost entirely absent. In this paper we examine whether the diversification of Trichoptera of the New Caledonian endemic genus Xanthochorema Kimmins, 1953 was related to the presence of ultrabasic substrate. The analysis is based on data from a phylogeny derived from DNA sequences of mitochondrial COX1, COX2 and 16S, and nuclear EF1a genes. The study of the relationships between ancestral species and substrate was carried out using dispersal-vicariance analysis and tracing the history of substrate association with ultrabasic and non-ultrabasic distributions representing the terminals in the fully resolved phylogenetic tree. Our results show that (1) the ancestor of all Xanthochorema species was present on ultrabasic substrate, (2) early speciation events were restricted to ultrabasic substrate, (3) younger ancestral species dispersed into non-ultrabasic substrates, and (4) late speciation events were restricted to non-ultrabasic substrate. These results correspond to the hypothesis that New Caledonia once was more extensively covered by ultrabasic rocks than at present.  相似文献   

2.
New Caledonia is well known for its rich and unique flora. Many studies have focused on the biogeographical origins of New Caledonian plants but rates of diversification on the island have scarcely been investigated. Here, dated phylogenetic trees from selected published studies were used to evaluate the time and tempo of diversification in New Caledonia. The 12 plant lineages investigated all appear to have colonized the island < 37 Mya, when New Caledonia re‐emerged after a period of inundation, and the timing of these arrivals is spread across the second half of the Cenozoic. Diversification rates are not particularly high and are negatively correlated with lineage age. The palms have the fastest diversification rates and also the most recent arrival times. The lineage ages of rainforest plants suggest that this ecosystem has been present for at least 6.9 Myr. The New Caledonian flora is apparently a relatively old community that may have reached a dynamic equilibrium. Colonization by new immigrants has been possible until relatively recently and diversity‐dependent processes may still be affecting the diversification rates of the earlier colonizers. Further studies on the diversification of large plant clades with exhaustive sampling should help to clarify this. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 288–298.  相似文献   

3.
The Lanceocercata are a clade of stick insects (Phasmatodea) that have undergone an impressive evolutionary radiation in Australia, New Caledonia, the Mascarene Islands and areas of the Pacific. Previous research showed that this clade also contained at least two of the nine New Zealand stick insect genera. We have constructed a phylogeny of the Lanceocercata using 2277 bp of mitochondrial and nuclear DNA sequence data to determine whether all nine New Zealand genera are indeed Lanceocercata and whether the New Zealand fauna is monophyletic. DNA sequence data were obtained from mitochondrial cytochrome oxidase subunits I and II and the nuclear large subunit ribosomal RNA and histone subunit 3. These data were subjected to Bayesian phylogenetic inference under a partitioned model and maximum parsimony. The resulting trees show that all the New Zealand genera are nested within a large New Caledonian radiation. The New Zealand genera do not form a monophyletic group, with the genus Spinotectarchus Salmon forming an independent lineage from the remaining eight genera. We analysed Lanceocercata apomorphies to confirm the molecular placement of the New Zealand genera and to identify characters that confirm the polyphyly of the fauna. Molecular dating analyses under a relaxed clock coupled with a Bayesian extension to dispersal‐vicariance analysis was used to reconstruct the biogeographical history for the Lanceocercata. These analyses show that Lanceocercata and their sister group, the Stephanacridini, probably diverged from their South American relatives, the Cladomorphinae, as a result of the separation of Australia, Antarctica and South America. The radiation of the New Caledonian and New Zealand clade began 41.06 million years ago (mya, 29.05–55.40 mya), which corresponds to a period of uplift in New Caledonia. The main New Zealand lineage and Spinotectarchus split from their New Caledonian sister groups 33.72 (23.9–45.62 mya) and 29.9 mya (19.79–41.16 mya) and began to radiate during the late Oligocene and early Miocene, probably in response to a reduction in land area and subsequent uplift in the late Oligocene and early Miocene. We discuss briefly shared host plant patterns between New Zealand and New Caledonia. Because Acrophylla sensu Brock & Hasenpusch is polyphyletic, we have removed Vetilia Stål from synonymy with Acrophylla Gray.  相似文献   

4.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   

5.

Aim

Understanding the evolution of the latitudinal diversity gradient (i.e. increase in species diversity towards the tropics) is a prominent issue in ecology and biogeography. Disentangling the relative contributions of environment and evolutionary history in shaping this gradient remains a major challenge because their relative importance has been found to vary across regions and taxa. Here, using the global distributions and a molecular phylogeny of Rhododendron, one of the largest genera of flowering plants, we aim to compare the relative contributions of contemporary environment, evolutionary time and diversification rates in generating extant species diversity patterns.

Location

Global.

Time period

Undefined.

Major taxa studied

Rhododendron.

Methods

We compiled the global distributions of all Rhododendron species, and constructed a dated molecular phylogeny using nine chloroplast genes and seven nuclear regions. By integrating these two datasets, we estimated the temporal trends of Rhododendron diversification, and explored the global patterns of its species diversity, net diversification rates, and species ages. Next, we reconstructed the geographical ancestral area of the clade. Finally, we compared the relative contribution of contemporary environment, time‐for‐speciation, and diversification rates on the species diversity pattern of Rhododendron.

Results

In contrast to the predictions of the time‐for‐speciation hypothesis, we found that although Rhododendron originated at a temperate latitude, its contemporary species diversity is highest in the tropics/subtropics, suggesting an into‐the‐tropics colonization for this genus. We found that the elevated diversification induced by heterogeneous environmental conditions in the tropics/subtropics shapes the global pattern of Rhododendron diversity.

Main conclusions

Our findings support tropical and subtropical mountains as not only biodiversity and endemism hotspots, but also as cradles for the diversification of Rhododendron. Our study emphasizes the need of unifying ecological and evolutionary approaches in order to gain comprehensive understanding of the mechanisms underlying the global patterns of plant diversity.  相似文献   

6.
Aim In this study, I examined the relative contributions of geography and ecology to species diversification within the genus Nerita, a prominent clade of marine snails that is widely distributed across the tropics and intertidal habitats. Specifically, I tested whether geographical patterns of speciation correspond primarily to allopatric or sympatric models, and whether habitat transitions have played a major role in species diversification. Location Indo‐West Pacific, eastern Pacific, Atlantic, tropical marine intertidal. Methods I used a previously reconstructed molecular phylogeny of Nerita as a framework to assess the relative importance of geographical and ecological factors in species diversification. To evaluate whether recently diverged clades exhibit patterns consistent with allopatric or sympatric speciation, I mapped the geo‐graphical distribution of each species onto the species‐level phylogeny, and examined the relationship between range overlap and time since divergence using age–range correlation analyses. To determine the relative contribution of habitat transitions to divergence, I traced shifts in intertidal substrate affinity and vertical zonation across the phylogeny using parsimony, and implemented randomization tests to evaluate the resulting patterns of ecological change. Results Within the majority of Nerita clades examined, age–range correlation analysis yielded a low intercept and a positive slope, similar to that expected under allopatric speciation. Approximately 75% of sister species pairs have maintained allopatric distributions; whereas more distantly related sister taxa often exhibited complete or nearly complete geographical overlap. In contrast, only 19% of sister species occupy distinct habitats. For both substrate and zonation, habitat transitions failed to concentrate towards either the tips or the root of the phylogeny. Instead, habitat shifts have occurred throughout the history of Nerita, with a general transition from the lower and mid‐littoral towards the upper and supra‐littoral zones, and multiple independent shifts from hard (rock) to softer substrates (mangrove, mud and sand). Main conclusions Both geography and ecology appear to have influenced diversification in Nerita, but to different extents. Geography seems to play a principal role, with allopatric speciation driving the majority of Nerita divergences. Habitat transitions appear insignificant in shaping the early and recent history of speciation, and promoting successive diversification in Nerita; however, shifts may have been important for respective divergences (i.e. those that correspond to the transitions) and enhancing diversity throughout the clade.  相似文献   

7.
We use approximately 1900bp of mitochondrial (ND2) and nuclear (c-mos and Rag-1) DNA sequence data to recover phylogenetic relationships among 58 species and 26 genera of Eugongylus group scincid lizards from New Caledonia, Lord Howe Island, New Zealand, Australia and New Guinea. Taxon sampling for New Caledonian forms was nearly complete. We find that the endemic skink genera occurring on New Caledonia, New Zealand and Lord Howe Island, which make up the Gondwanan continental block Tasmantis, form a monophyletic group. Within this group New Zealand and New Zealand+Lord Howe Island form monophyletic clades. These clades are nested within the radiation of skinks in New Caledonia. All of the New Caledonian genera are monophyletic, except Lioscincus. The Australian and New Guinean species form a largely unresolved polytomy with the Tasmantis clade. New Caledonian representatives of the more widespread genera Emoia and Cryptoblepharus are more closely related to the non-Tasmantis taxa than to the endemic New Caledonian genera. Using ND2 sequences and the calibration estimated for the agamid Laudakia, we estimate that the diversification of the Tasmantis lineage began at least 12.7 million years ago. However, using combined ND2 and c-mos data and the calibration estimated for pygopod lizards suggests the lineage is 35.4-40.74 million years old. Our results support the hypothesis that skinks colonized Tasmantis by over-water dispersal initially to New Caledonia, then to Lord Howe Island, and finally to New Zealand.  相似文献   

8.
Ecological opportunity is a powerful driver of evolutionary diversification, and predicts rapid lineage and phenotypic diversification following colonization of competitor‐free habitats. Alternatively, topographic or environmental heterogeneity could be key to generating and sustaining diversity. We explore these hypotheses in a widespread lineage of Australian lizards: the Gehyra variegata group. This clade occurs across two biomes: the Australian monsoonal tropics (AMT), where it overlaps a separate, larger bodied clade of Gehyra and is largely restricted to rocks; and in the larger Australian arid zone (AAZ) where it has no congeners and occupies trees and rocks. New phylogenomic data and coalescent analyses of AAZ taxa resolve lineages and their relationships and reveal high diversity in the western AAZ (Pilbara region). The AMT and AAZ radiations represent separate radiations with no difference in speciation rates. Most taxa occur on rocks, with small geographic ranges relative to widespread generalist taxa across the vast central AAZ. Rock‐dwelling and generalist taxa differ morphologically, but only the lineage‐poor central AAZ taxa have accelerated evolution. This accords with increasing evidence that lineage and morphological diversity are poorly correlated, and suggests environmental heterogeneity and refugial dynamics have been more important than ecological release in elevating lineage diversity.  相似文献   

9.
In area, New Caledonia is the smallest of the world’s 25 official biodiversity hotspots, but in many taxonomic groups, the island has the highest concentration of species on earth, particularly so in the freshwater insect order Trichoptera. This study aims at applying molecular data and morphology for estimating the real species diversity of the genus Agmina on New Caledonia and investigating potential effects of ultramafic rock substrate on diversification. A dated molecular phylogeny was applied to study diversity and diversification related to geological substrate using the dispersal–extinction–cladogenesis model, diva and Bayesian ancestral character reconstruction. More than 47 species (> 63%) were unknown to science. Initial radiation occurred on ultramafic substrate followed by several independent dispersal events to nonultramafic substrate. The rate of shift from ultramafic to nonultramafic substrate was significantly higher than the rate of shift in the opposite direction, indicating a possible cost associated with living on ultramafic substrate.  相似文献   

10.
? Premise of the study: Despite its small size, New Caledonia is characterized by a very diverse flora and striking environmental gradients, which make it an ideal setting to study species diversification. Thirteen of the 19 Araucaria species are endemic to the territory and form a monophyletic group, but patterns and processes that lead to such a high species richness are largely unexplored. ? Methods: We used 142 polymorphic AFLP markers and performed analyses based on Bayesian clustering algorithms, genetic distances, and cladistics on 71 samples representing all New Caledonian Araucaria species. We examined correlations between the inferred evolutionary relationships and shared morphological, ecological, or geographic parameters among species, to investigate evolutionary processes that may have driven speciation. ? Key results: We showed that genetic divergence among the present New Caledonian Araucaria species is low, suggesting recent diversification rather than pre-existence on Gondwana. We identified three genetic groups that included small-leaved, large-leaved, and coastal species, but detected no association with soil preference, ecological habitat, or rainfall. The observed patterns suggested that speciation events resulted from both differential adaptation and vicariance. Last, we hypothesize that speciation is ongoing and/or there are cryptic species in some genetically (sometimes also morphologically) divergent populations. ? Conclusions: Further data are required to provide better resolution and understanding of the diversification of New Caledonian Araucaria species. Nevertheless, our study allowed insights into their evolutionary relationships and provides a framework for future investigations on the evolution of this emblematic group of plants in one of the world's biodiversity hotspots.  相似文献   

11.
Biotic interchange between geographic regions can promote rapid diversification. However, what are the important factors that determine the rate of diversification (e.g., trait‐dependent diversification) vary between study systems. The evolutionary history of Dynastes beetles, which can be found in both North and South Americas and exhibit two different altitudinal preferences (highland and lowland) is tested for the effects of biotic interchange between continents and different ecological preferences on the rate of species diversification. Additionally, the hypotheses of geological time‐dependent and lineage specific diversification rates are also tested. Results from this study indicate that in Dynastes beetles a pre‐landbridge dispersal hypothesis from South to North America is preferred and that the speciation rates estimated using BAMM are similar between lineages of different geographic origins and different altitudinal preferences (i.e., diversification rate is not trait‐dependent). On the other hand, my result from marcoevolutionary cohort analysis based on BAMM outputs suggests that the rate of speciation in Dynastes beetles is, instead of trait‐dependent (geographic and ecological), lineage specific. Furthermore, a steadily increasing speciation rate can be found in Pliocene and Pleistocene, which implies that geological and climatic events, i.e., colonizing North America, habitat reformation in the Amazonia, and forest contraction in Pleistocene, may have together shaped the current biodiversity pattern in Dynastes beetles.  相似文献   

12.
Dispersal is a critical factor determining the spatial scale of speciation, which is constrained by the ecological characteristics and distribution of a species’ habitat and the intrinsic traits of species. Endogean taxa are strongly affected by the unique qualities of the below‐ground environment and its effect on dispersal, and contrasting reports indicate either high dispersal capabilities favoured by small body size and mediated by passive mechanisms, or low dispersal due to restricted movement and confinement inside the soil. We studied a species‐rich endogean ground beetle lineage, Typhlocharina, including three genera and more than 60 species, as a model for the evolutionary biology of dispersal and speciation in the deep soil . A time‐calibrated molecular phylogeny generated from >400 individuals was used to delimit candidate species, to study the accumulation of lineages through space and time by species–area–age relationships and to determine the geographical structure of the diversification using the relationship between phylogenetic and geographic distances across the phylogeny. Our results indicated a small spatial scale of speciation in Typhlocharina and low dispersal capacity combined with sporadic long distance, presumably passive dispersal events that fuelled the speciation process. Analysis of lineage growth within Typhlocharina revealed a richness plateau correlated with the range of distribution of lineages, suggesting a long‐term species richness equilibrium mediated by density dependence through limits of habitat availability. The interplay of area‐ and age‐dependent processes ruling the lineage diversification in Typhlocharina may serve as a general model for the evolution of high species diversity in endogean mesofauna.  相似文献   

13.
Evolutionary diversification of clades of squamate reptiles   总被引:2,自引:0,他引:2  
We analysed the diversification of squamate reptiles (7488 species) based on a new molecular phylogeny, and compared the results to similar estimates for passerine birds (5712 species). The number of species in each of 36 squamate lineages showed no evidence of phylogenetic conservatism. Compared with a random speciation-extinction process with parameters estimated from the size distribution of clades, the alethinophidian snakes (2600 species) were larger than expected and 13 clades, each having fewer than 20 species, were smaller than expected, indicating rate heterogeneity. From a lineage-through-time plot, we estimated that a provisional rate of lineage extinction (0.66 per Myr) was 94% of the rate of lineage splitting (0.70 per Myr). Diversification in squamate lineages was independent of their stem age, but strongly related to the area of the region within which they occur. Tropical vs. temperate latitude exerted a marginally significant influence on species richness. In comparison with passerine birds, squamates share several clade features, including: (1) independence of species richness and age; (2) lack of phylogenetic signal with respect to clade size; (3) general absence of exceptionally large clades; (4) over-representation of small clades; (5) influence of region size on clade size; and (6) similar rates of speciation and extinction. The evidence for both groups suggests that clade size has achieved long-term equilibrium, suggesting negative feedback of species richness on the rate of diversification.  相似文献   

14.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

15.
Helicopsyche trispina sp. n. is described from Grande Terre, New Caledonia, based on pharate males, larvae and pupae. The species appears to belong to the monophyletic New Caledonian Helicopsyche clade.  相似文献   

16.
Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named ‘maquis minier’, unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of ‘maquis minier’, in order to better understand the origin and past dynamics of New Caledonian biota.  相似文献   

17.
The fluvicoline New World flycatchers (subfamily Fluvicolinae, family Tyrannidae) inhabit a broad range of forest and non‐forest habitats in all parts of the New World. Using a densely sampled phylogeny we depict the diversification and expansion of this group in time and space. We provide evidence that a shift in foraging behaviour allowed the group to rapidly expand in a wide range of tropical and subtropical habitats in South America. The results support that four main clades expanded into and specialized to distinct habitats and climates (closed to open, and warm to cold), respectively, and subsequently underwent vicariant speciation within their respective ecoregions. The group soon reached a significant species diversity over virtually all of South and North America, and with parallel trajectories of speciation slow‐down in all four clades. The genus Muscisaxicola is an exception, as it invaded the most inhospitable and barren environments in the Andes where they underwent rapid diversification in the Plio‐Pleistocene.  相似文献   

18.
Based on the literature, we had predicted that the diversification within the Neotropical snake genus Bothrops occurred along a latitudinal gradient from north to south, with diversification into unoccupied niches through ecological opportunity, not correlated with geoclimatic events. Using a dated phylogeny and estimating likelihoods of ancestral states at cladogenesis events, we reconstructed ancestral areas and assessed major events of the diversification of Bothrops clades, and we also discuss systematic implications for this group. Based on the phylogeny we produced, B. lojanus was not considered as part of the genus Bothrops since the results recovered this species nested within the Bothrocophias clade. We infer that the diversification of the Miocene Bothrops pictus and Bothrops alternatus clades may be related to the uplift of the western slopes of the Andes and the Argentinian Patagonian Andes, respectively. The Pliocene Bothrops taeniatus and Bothrops osbornei clades may be related to the uplift of the eastern and northern Andes, respectively. The Plio-Pleistocene Bothrops neuwiedi clade may be related to the habitat transitions from a warmer and forested environment to a cooler and open landscape; the Bothrops jararaca (i.e. island endemic species) and Bothrops lanceolatus clades to over-water dispersal with island speciation; and Bothrops atrox clade to the appearance of the Panamanian land bridge. We found that a multitemporal and multidirectional history of diversification may be correlated with geoclimatic and dispersalist events. We argue that the vacant niche hypothesis by itself does not explain Bothrops diversification.  相似文献   

19.
Rapid diversification may be caused by ecological adaptive radiation via niche divergence. In this model, speciation is coupled with niche divergence and lineage diversification is predicted to be correlated with rates of niche evolution. Studies of the role of niche evolution in diversification have generally focused on ecomorphological diversification but climatic‐niche evolution may also be important. We tested these alternatives using a phylogeny of 298 species of ovenbirds (Aves: Furnariidae). We found that within Furnariidae, variation in species richness and diversification rates of subclades were best predicted by rate of climatic‐niche evolution than ecomorphological evolution. Although both are clearly important, univariate regression and multivariate model averaging more consistently supported the climatic‐niche as the best predictor of lineage diversification. Our study adds to the growing body of evidence, suggesting that climatic‐niche divergence may be an important driver of rapid diversification in addition to ecomorphological evolution. However, this pattern may depend on the phylogenetic scale at which rate heterogeneity is examined.  相似文献   

20.
Aim Determine the geographical and temporal origins of New Zealand cicadas. Location New Zealand, eastern Australia and New Caledonia. Methods DNA sequences from 14 species of cicadas from New Zealand, Australia, and New Caledonia were examined. A total of 4628 bp were analysed from whole genome extraction of four mitochondrial genes (cytochrome oxidase subunits I and II, and ribosomal 12S and 16S subunits) and one nuclear gene (elongation factor‐1 alpha). These DNA sequences were aligned and analysed using standard phylogenetic methods based primarily on the maximum likelihood optimality criterion. Dates of divergences between clades were determined using several molecular clock methods. Results New Zealand cicadas form two well‐defined clades. One clade groups with Australian taxa, the other with New Caledonian taxa. The molecular clock analyses indicate that New Zealand genera diverged from the Australian and New Caledonian genera within the last 11.6 Myr. Main conclusions New Zealand was likely colonized by two or more invasions. One NZ lineage has its closest relatives in Australia and the other in New Caledonia. These invasions occurred well after New Zealand became isolated from other land masses, therefore cicadas must have crossed large bodies of water to reach New Zealand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号