首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many hosts of obligate brood parasites accept parasitic eggs despite the high costs of parasitism. Acceptance is particularly perplexing in brown-headed cowbird (Molothrus ater) (hereafter “cowbird”) hosts because the eggs of cowbirds and most hosts do not appear to match closely in visual characteristics detectable by humans. However, recent evidence suggests that parasite and host eggs may match in their ultraviolet (UV) reflectance, undetectable by humans, and that birds may use UV signals for egg discrimination. We determined whether egg colour matching in UV reflectance separates accepters and rejecters of cowbird parasitism by comparing the total UV (300–400 nm) reflectance of the eggs of 11 host species to cowbird eggs. Eggs of three of five accepter species and five of five rejecter species differed significantly from cowbird eggs in UV reflectance. We found no significant difference in the UV reflectance of the eggs of three closely related pairs of accepter and rejecter species. There also was no significant difference in the UV reflectance of cowbird eggs laid in nests of five host species, and the UV reflectance of cowbird eggs was not significantly correlated with that of host clutches. Thus, we found no support for the UV-matching hypothesis in brown-headed cowbirds and UV reflectance does not appear to separate accepters and rejecters of parasitism. Differences in UV reflectance between cowbird and host eggs, however, provide potential cues for use in egg discrimination. Experimental testing is needed to determine the relative importance of UV reflectance compared to other visual cues.  相似文献   

2.
Nestling rejection is a rare type of host defense against brood parasitism compared with egg rejection. Theoretically, host defenses at both egg and nestling stages could be based on similar underlying discrimination mechanisms but, due to the rarity of nestling rejector hosts, few studies have actually tested this hypothesis. We investigated egg and nestling discrimination by the fan-tailed gerygone Gerygone flavolateralis, a host that seemingly accepts nonmimetic eggs of its parasite, the shining bronze-cuckoo Chalcites lucidus, but ejects mimetic parasite nestlings. We introduced artificial eggs or nestlings and foreign gerygone nestlings in gerygone nests and compared begging calls of parasite and host nestlings. We found that the gerygone ejected artificial eggs only if their size was smaller than the parasite or host eggs. Ejection of artificial nestlings did not depend on whether their color matched that of the brood. The frequency of ejection increased during the course of the breeding season mirroring the increase in ejection frequency of parasite nestlings by the host. Cross-fostered gerygone nestlings were frequently ejected when lacking natal down and when introduced in the nest before hatching of the foster brood, but only occasionally when they did not match the color of the foster brood. Begging calls differed significantly between parasite and host nestlings throughout the nestling period. Our results suggest that the fan-tailed gerygone accepts eggs within the size range of gerygone and cuckoo eggs and that nestling discrimination is based on auditory and visual cues other than skin color. This highlights the importance of using a combined approach to study discrimination mechanisms of hosts.  相似文献   

3.
One of the great evolutionary puzzles is why hosts of parasitic birds discriminate finely against alien eggs, but almost never discriminate against parasitic chicks. A theoretical model has shown that an adaptive host response to alien eggs can be based on learning. However, learned nestling discrimination is too costly to be favoured by selection in hosts of evicting parasites, such as the European cuckoo (Cuculus canorus). Indeed, parasitic chick rejection has never been reported for any European cuckoo host species. As learned nestling discrimination is maladaptive, one can expect that a viable alternative for hosts would be to use discrimination mechanisms not involving learning and/or recognition. We suggest that hosts may starve and desert cuckoo chicks that require higher amounts of food than an average host brood at fledging (i.e. feeding rates to a parasite are outside the normal range of host behaviour in unparasitized nests). Our observations of the reed warbler (Acrocephalus scirpaceus) at parasitized nests indicate that such behaviour could possibly work in this host species.  相似文献   

4.
When brood parasites exploit multiple host species, egg rejection by hosts may select for the evolution of host‐specific races, where each race mimics a particular host's egg type. However, some brood parasites that exploit multiple hosts with the ability to reject foreign eggs appear to have only a single egg type. In these cases, it is unclear how the parasite egg escapes detection by its hosts. Three possible explanations are: 1) host‐specific races are present, but differences in egg morphology are difficult for the human eye to detect; 2) the brood parasite evolves a single egg type that is intermediate in appearance between the eggs of its hosts; 3) or the parasite evolves mimicry of one of its hosts, which subsequently allows it to exploit other species with similar egg morphology. Here we test these possibilities by quantifying parameters of egg appearance of the brood‐parasitic Pacific koel Eudynamys orientalis and seven of its hosts. Koel eggs laid in the nests of different hosts did not show significant differences in colour or pattern, suggesting that koels have not evolved host‐specific races. Koel eggs were similar in colour, luminance and pattern to the majority of hosts, but were significantly more similar in colour and luminance to one of the major hosts than to two other major hosts, supporting hypothesis 3. Our findings suggest that mimicry of one host can allow a brood parasite to exploit new hosts with similar egg morphologies, which could inhibit the evolution of host defences in naïve hosts.  相似文献   

5.
Eggshell colour patterns play a crucial role in avian host–parasite coevolution. In contrast to many experiments investigating general host egg discrimination abilities, studies testing where specific recognition cues are located on the eggshells (on blunt, sharp or both egg poles) are lacking. Previous studies suggested that discrimination cues might be located at the blunt egg pole, where the shell patterning is typically concentrated. We tested this hypothesis experimentally in species subject to interspecific (great reed warblers Acrocephalus arundinaceus, reed warblers A. scirpaceus), and also intraspecific parasitism (song thrushes Turdus philomelos, blackbirds T. merula). We examined host responses towards two types of intraspecific eggs painted non‐mimetic immaculate blue either at blunt or sharp poles. All four species rejected eggs manipulated at the blunt pole at significantly higher rates, indicating that they perceive the critical recognition cues in the same egg part. Thus, the presence of egg recognition cues at the blunt egg pole may be a general phenomenon in birds parasitized by both intraspecific and interspecific parasites.  相似文献   

6.
Paying attention to weight is important when deciding upon an object''s efficacy or value in various contexts (e.g. tool use, foraging). Proprioceptive discrimination learning, with objects that differ only in weight, has so far been investigated almost exclusively in primate species. Here, we show that while Goffin''s cockatoos learn faster when additional colour cues are used, they can also quickly learn to discriminate between objects on the basis of their weight alone. Ultimately, the birds learned to discriminate between visually identical objects on the basis of weight much faster than primates, although methodological differences between tasks should be considered.  相似文献   

7.
How to analyse host discrimination   总被引:1,自引:0,他引:1  
Abstract. 1. Two usual definitions of host discrimination are presented. The first is 'the ability of a parasite to distinguish unparasitized from parasitized hosts and to lay eggs in the former'. This definition is not useful and even confusing since it does not include the ability of a parasite to distinguish hosts containing different numbers of parasite eggs and to lay preferably only in those with the lowest numbers.
2. The second definition is 'the ability of a parasite to distribute its eggs in a non-random, regular way among its hosts'. It is argued that most field data are insufficient to permit any conclusions about host discriminative ability on the basis of this definition. An example is given of an apparent random distribution by parasites that are perfectly able to discriminate.
3. Arguments are given for studying the behaviour of the parasite in order to answer the question of host discrimination. Five examples of parasites are presented that would erroneously have been classified as non-discriminators on the basis of the first definition, since they all superparasitize.
4. It is suggested that the meaning of the term 'host discrimination' be extended to include the ability of a parasite to distinguish hosts with different numbers of eggs.  相似文献   

8.
We studied egg‐pecking behaviour in males and females of three cowbird species: the shiny cowbird (Molothrus bonariensis), a host generalist brood parasite, the screaming cowbird (M. rufoaxillaris), a host specialist brood parasite, and the bay‐winged cowbird (Agelaioides badius), a non‐parasitic species. We conducted three experiments in which we offered each bird an artificial nest with two plaster eggs and recorded whether egg pecking occurred and the number of pecks on each egg. In expt 1, we tested if there were species and sex differences in egg‐pecking behaviour by offering the birds two spotted eggs of similar pattern. Shiny and screaming cowbirds responded in 40.3% and 44% of the trials, respectively, with females and males presenting similar levels of response. In contrast, bay‐winged cowbirds did not show any response. In expt 2, we tested if shiny cowbirds responded differentially when they faced a choice between one host and one shiny cowbird egg, while in expt 3, we tested if screaming cowbirds responded differentially when they faced a choice between one shiny and one screaming cowbird egg. Shiny cowbirds pecked preferentially host eggs while screaming cowbirds pecked more frequently shiny cowbird eggs. Our results show that egg‐pecking behaviour is present in both sexes of parasitic cowbirds, but not in non‐parasitic birds, and that parasitic cowbirds can discriminate between eggs of their own species and the eggs of their hosts or other brood parasites.  相似文献   

9.
Dynamic egg color mimicry   总被引:1,自引:0,他引:1       下载免费PDF全文
Evolutionary hypotheses regarding the function of eggshell phenotypes, from solar protection through mimicry, have implicitly assumed that eggshell appearance remains static throughout the laying and incubation periods. However, recent research demonstrates that egg coloration changes over relatively short, biologically relevant timescales. Here, we provide the first evidence that such changes impact brood parasite–host eggshell color mimicry during the incubation stage. First, we use long‐term data to establish how rapidly the Acrocephalus arundinaceus Linnaeus (great reed warbler) responded to natural parasitic eggs laid by the Cuculus canorus Linnaeus (common cuckoo). Most hosts rejected parasitic eggs just prior to clutch completion, but the host response period extended well into incubation (~10 days after clutch completion). Using reflectance spectrometry and visual modeling, we demonstrate that eggshell coloration in the great reed warbler and its brood parasite, the common cuckoo, changes rapidly, and the extent of eggshell color mimicry shifts dynamically over the host response period. Specifically, 4 days after being laid, the host should notice achromatic color changes to both cuckoo and warbler eggs, while chromatic color changes would be noticeable after 8 days. Furthermore, we demonstrate that the perceived match between host and cuckoo eggshell color worsened over the incubation period. These findings have important implications for parasite–host coevolution dynamics, because host egg discrimination may be aided by disparate temporal color changes in host and parasite eggs.  相似文献   

10.
Raising genetically unrelated young is maladaptive, yet brood parasitism is widespread in birds. In several systems, hosts can evolve near-perfect defences against the parasite (discrimination and rejection of unlike eggs), making it difficult to understand how the parasite continues to exist. This study demonstrates costs to host defences (e.g. rejection of one's own eggs) such that once the parasite goes extinct on a particular host species, defence mechanisms are selectively disadvantageous. The consequent loss of host defences, and potential for re-exploitation of the host by the parasite, can explain the continued persistence of avian brood parasites. The results provide one general explanation for coexistence of parasites and their hosts.  相似文献   

11.
In Hymenopterous parasitoids, host discrimination enables a female to avoid ovipositing in an already parasitized host. A female recognizes such hosts by the presence of external or internal pheromone markings that differ depending on whether the host has been parasitized by the same female, a conspecific or a female of another species. If the ability to recognize hosts parasitized by genetically distant females does exist and results in a change in acceptance, this behaviour would have an impact on sympatric speciation. We tested this hypothesis in Anaphes victus Huber (Hymenoptera: Mymaridae) by examining two special cases of intraspecific discrimination: the recognition of different biotypes (i.e. genotypic discrimination) and the recognition of close relatives (i.e. kin discrimination). Female A. victus had to choose between two categories of parasitized eggs in petri dishes. They were able to discriminate between biotypes and always preferred to oviposit in eggs parasitized by females of other biotypes rather than by females of their own biotype. Females were also able to discriminate between their sisters and unrelated conspecifics and preferred to oviposit in eggs parasitized by unrelated females, but did not discriminate between their sisters and themselves. These results suggest that there is a polymorphic genetic component in host discrimination and that such a preference could induce a reduction in gene flow between populations. That this discrimination system shares many analogies with the complex system of communication of social Hymenoptera is discussed.  相似文献   

12.
Eggshell colouration is thought to function as a female-specific secondary sexual trait. While tests of this idea are rapidly accumulating in cavity-nesting birds, some fundamental underlying assumptions remain rarely investigated: namely, can males see eggshell coloration and perceive colour differences between the eggs of different females? We tested these two key assumptions in a natural population of blue tits (Cyanistes caeruleus). Using transponders, we tracked male nest visits and found that all males visited their nest-boxes while eggs were present and often visually accessible. Interestingly, some males also visited neighbouring nests. We then tested whether birds could detect eggshell coloration using models of avian colour vision; models were performed with and without limitations on visual performance owing to dim light. Both models found that differences in eggshell brightness were often easier to discriminate than differences in colour; there was more contrast in white eggshell background between clutches than within and its contrast against nest background was repeatable within clutches, suggesting these features could act as signals. Yet, the detectability of these contrasts depended entirely on model assumptions of visual limitations. Consequently, we need a better understanding of underlying visual mechanisms in dim-light environments and behavioural discrimination experiments before confirming the signalling potential of eggshell coloration.  相似文献   

13.
Many hosts of the common cuckoo (Cuculus canorus) exhibit egg recognition, and reject parasitic eggs. How do hosts discriminate cuckoo eggs from their own? Hosts might be able to recognize their own eggs using the specific pigment pattern on the outer eggshell surface, which may serve as a cue for recognition. We tested if patterns of egg pigments (spottedness) contain this information by manipulating spot density of great reed warbler eggs (Acrocephalus arundinaceus). We also manipulated the colour of eggs when the original spot pattern remained the same. Spot density (approximately 15–75%) did not significantly affect rejection rate (8–20% rejection), but when spots fully covered the eggs, i.e. the eggshell was plain dark brown, rejection rate increased abruptly to 100%. A loglinear model revealed the significant influence of colour on rejection rates, although there was no interactive effect between spottedness and colour. Our results strongly support the differential use of egg markers in host’s egg discrimination, suggesting that spot density has limited importance compared to eggshell colour.  相似文献   

14.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

15.
Evolutionary arms-races between avian brood parasites and their hosts have typically resulted in some spectacular adaptations, namely remarkable host ability to recognize and reject alien eggs and, in turn, sophisticated parasite egg mimicry. In a striking contrast to hosts sometimes rejecting even highly mimetic eggs, the same species typically fail to discriminate against highly dissimilar parasite chicks. Understanding of this enigma is still hampered by the rarity of empirical tests - and consequently evidence - for chick discrimination. Recent work on Australian host-parasite systems (Gerygone hosts vs. Chalcites parasites), increased not only the diversity of hosts showing chick discrimination, but also discovered an entirely novel host behavioural adaptation. The hosts do not desert parasite chicks (as in all previously reported empirical work) but physically remove living parasites from their nests. Here, I briefly discuss these exciting findings and put them in the context of recent empirical and theoretical work on parasite chick discrimination. Finally, I review factors responsible for a relatively slow progress in this research area and suggest most promising avenues for future research.  相似文献   

16.
Nests of social insects are an attractive resource in terms of nutrition and shelter and therefore targeted by a variety of pathogens and parasites that harness the resources of a host colony in their own reproductive interests. Colonies of the ants Formica fusca and F. lemani serve as hosts for mound‐building Formica species, the queens of which use host colonies during colony founding. Here, we investigate whether workers of the host species can mitigate the costs imposed on them by invading parasite queens by recognizing and selectively removing eggs laid by these queens. We used behavioural assays, allowing host workers to choose between con‐colonial eggs and eggs laid by the parasite species F. truncorum. We show that workers of both host species discriminate between the two types of eggs in favour of con‐colonial eggs. Moreover, workers of F. fusca rejected more con‐colonial eggs than F. lemani. This higher rate of error in F. fusca may reflect a greater selectivity or a greater difficulty in discriminating between the two egg types. Nevertheless, both host species removed parasite eggs at a similar rate, when these were artificially introduced into the colonies, although some eggs remained after 10 d. In addition, upon receiving parasite eggs, host workers started to lay unfertilized male‐destined eggs within 6 d, thus employing an alternative pathway to gain direct fitness when the resident queen is no longer present and the colony is parasitized.  相似文献   

17.
How do birds tell the colours of their own and foreign eggs apart? We demonstrate that perceptual modelling of avian visual discrimination can predict behavioural rejection responses to foreign eggs in the nest of wild birds. We use a photoreceptor noise-limited colour opponent model of visual perception to evaluate its accuracy as a predictor of behavioural rates of experimental egg discrimination in the song thrush Turdus philomelos. The visual modelling of experimental and natural eggshell colours suggests that photon capture from the ultraviolet and short wavelength-sensitive cones elicits egg rejection decisions in song thrushes, while inter-clutch variation of egg coloration provides sufficient contrasts for detecting conspecific parasitism in this species. Biologically realistic sensory models provide an important tool for relating variability of behavioural responses to perceived phenotypic variation.  相似文献   

18.
Some parasite cuckoo species lay eggs that, to the human eye, appear to mimic the appearance of the eggs of their favourite hosts, which hinders discrimination and removal of their eggs by host species. Hitherto, perception of cuckoo-host egg mimicry has been estimated based on human vision or spectrophotometry, which does not account for what the receivers' eye (i.e. hosts) actually discriminates. Using a discrimination model approach that reproduces host retinal functioning, and museum egg collections collected in the south of Finland, where at least six different races of the European cuckoo (Cuculus canorus) coexist, I first assess whether the colour design of cuckoo eggs of different races maximizes matching for two favourite avian hosts, viz. the redstart (Phoenicurus phoenicurus) and the pied wagtail (Motacilla alba). Second, I assess the role of nest luminosity on host perception of mimicry by the same two hosts. Phoenicurus-cuckoo eggs showed a better chromatic matching with the redstart-host eggs than other cuckoo races, and in most cases can not be discriminated. Sylvia-cuckoo eggs, however, showed better achromatic matching with redstart-host eggs than Phoenicurus-cuckoo eggs. Also, Motacilla-cuckoo eggs showed poorer chromatic and achromatic matching with pied wagtail-host eggs than Sylvia-cuckoo eggs. Nest luminosity affected chromatic and achromatic differences between cuckoo and host eggs, although only minimally affected the proportion of cuckoo eggs discriminated by chromatic signals. These results reveal that cuckoo races as assessed by humans do not entirely match with host perception of matching and that achromatic mechanisms could play a main role in the discrimination of cuckoo eggs at low-light levels.  相似文献   

19.
Evolution of host egg mimicry in a brood parasite, the great spotted cuckoo   总被引:1,自引:0,他引:1  
Brood parasitism in birds is one of the best examples of coevolutionary interactions in vertebrates. Coevolution between hosts and parasites is assumed to occur because the parasite imposes strong selection pressures on its hosts, reducing their fitness and thereby favouring counter-adaptations (e.g. egg rejection) which, in turn, select for parasite resistance (e.g. egg mimicry). Great spotted cuckoos ( Clamator glandarius ) are usually considered a brood parasite with eggs almost perfectly mimicking those of their host, the magpie ( Pica pica ). However, Cl. glandarius also exploits South African hosts with very different eggs, both in colour and size, while the Cl. glandarius eggs are similar to those laid in nests of European hosts. Here, we used spectrophotometric techniques for the first time to quantify mimicry of parasitic eggs for eight different host species. We found: (1) non-significant differences in appearance of Cl. glandarius eggs laid in nests of different host species, although eggs laid in South Africa and Europe differed significantly; (2) contrary to the general assumption that Cl. glandarius eggs better mimic those of the main host in Europe ( P. pica ), Cl. glandarius eggs more closely resembled those of the azure-winged magpie ( Cyanopica cyana ), a potential host in which there is no evidence of recent parasitism; (3) the appearance of Cl. glandarius eggs was not significantly related to the appearance of host eggs. We discuss three possible reasons why Cl. glandarius eggs resemble eggs of some of their hosts. We suggest that colouration of Cl. glandarius eggs is an apomorphic trait, and that variation between eggs laid in South African and European host nests is due to genetic isolation among these populations and not due to variation in colouration of host eggs.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 551–563.  相似文献   

20.
The coevolutionary process between avian brood parasites and their hosts predicts that low intraclutch variation in egg colour appearance favours egg discrimination of parasite eggs by hosts. Low intraclutch variation would also result in high interclutch variation, which would increase the difficulty of evolution of mimicry by the cuckoo, because many host colour patterns might coexist in the same host population. We explored this possibility using an experimental approach in the common magpie, Pica pica, and great spotted cuckoo, Clamator glandarius, system. We artificially parasitized magpie nests with great spotted cuckoo model eggs to assess host response in two populations in Spain (Guadix and Doñana) in relation to intraclutch variation in egg appearance, measured by ultraviolet-visible reflectance spectrophotometry. Individuals that rejected model cuckoo eggs had higher intraclutch variation than accepters, suggesting that an increase, rather than a decrease, in intraclutch variation in magpie egg appearance was advantageous for cuckoo egg discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号