首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As one of the most specialized pollination syndromes, the fig (Ficus)–fig wasp (Agaonidae) mutualism can shed light on how pollinator behaviour and specificity affect plant diversification through processes such as reproductive isolation and hybridization. Pollinator sharing among species has important implications for Ficus species delimitation and the evolutionary history of the mutualism. Although agaonid wasp pollinators are known to visit more than one host species in monoecious figs, pollinator sharing has yet to be documented in dioecious figs. The present study investigated the frequency of pollinator sharing among sympatric, closely‐related dioecious figs in Ficus sections Sycocarpus and Sycidium. Molecular and morphological species identification established the associations between pollinating agaonid wasp species and host fig species. Cytochrome oxidase I was sequenced from 372 Ceratosolen pollinators of Ficus section Sycocarpus and 210 Kradibia pollinators of Ficus section Sycidium. The association between fig species and morphologically distinct clades of pollinator haplotypes was predominantly one‐to‐one. In Ceratosolen, six of 372 pollinators (1.5%) visited fig species other than the predominant host. No pollinator sharing was detected between the two Sycidium host species, although a rare hybrid shared Kradibia pollinators with both parental species. These findings point to low rates of pollinator sharing among closely‐related dioecious fig species in sympatry, and perhaps lower rates than among monoecious figs. Such rare events could be evolutionarily important as mechanisms for gene flow among fig species. Differences in rates of pollinator sharing among fig lineages might explain the conflicting phylogenetic patterns inferred among monoecious figs, dioecious figs, and their respective pollinators. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 546–558.  相似文献   

2.
Differences in breeding system are associated with correlated ecological and morphological changes in plants. In Ficus, dioecy and monoecy are strongly associated with different suites of traits (tree height, population density, fruiting frequency, pollinator dispersal ecology). Although approximately 30% of fig species are pollinated by multiple species of fig‐pollinating wasps, it has been suggested that copollinators are rare in dioecious figs. Here, we test whether there is a connection between the fig breeding system and copollinator incidence and diversification by conducting a meta‐analysis of molecular data from pollinators of 119 fig species that includes new data from 15 Asian fig species. We find that the incidence of copollinators is not significantly different between monoecious and dioecious Ficus. Surprisingly, while all copollinators in dioecious figs are sister taxa, only 32.1% in monoecious figs are sister taxa. We present hypotheses to explain those patterns and discuss their consequences on the evolution of this mutualism.  相似文献   

3.
Pollination and parasitism in functionally dioecious figs   总被引:17,自引:0,他引:17  
Fig wasps (Agaonidae: Hymenoptera) are seed predators and their interactions with Ficus species (Moraceae) range from mutualism to parasitism. Recently considerable attention has been paid to conflicts of interest between the mutualists and how they are resolved in monoecious fig species. However, despite the fact that different conflicts can arise, little is known about the factors that influence the persistence of the mutualism in functionally dioecious Ficus. We studied the fig pollinator mutualism in 14 functionally dioecious fig species and one monoecious species from tropical lowland rainforests near Madang, Papua New Guinea. Observations and experiments suggest that (i) pollinating wasps are monophagous and attracted to a particular host species; (ii) pollinating and non-pollinating wasps are equally attracted to gall (male) figs and seed (female) figs in functionally dioecious species; (iii) differing style lengths between gall figs and seed figs may explain why pollinators do not develop in the latter; (iv) negative density dependence may stabilize the interaction between pollinating wasps and their parasitoids; and (v) seed figs may reduce the search efficiency of non-pollinators. This increased pollinator production without a corresponding decrease in seed production could provide an advantage for dioecy in conditions where pollinators are limiting.  相似文献   

4.
Fig trees ( Ficus ) and their obligate pollinating wasps (Hymenoptera, Chalcidoidea, Agaonidae) are a classic example of a coevolved mutualism. Pollinating wasps are attracted to figs only when figs are receptive. It has been shown that figs will lose their attraction to pollinators sooner in monoecious and male dioecious figs when multiple pollinators have entered the enclosed inflorescence. However, little is known about the nature of the stimulus inducing the loss of attraction. By conducting experiments on the functionally dioecious fig, Ficus hispida , we show that (1) different stimuli induce the loss of attraction in each sex, pollination in female figs, and oviposition in male figs; and (2) foundress number affects the loss of attraction in both sexes only when the prerequisites ( i.e ., pollination in female figs and oviposition in male figs) have been satisfied. In general, the more foundresses that enter, the earlier the fig will lose its receptivity. We argue that the stimuli in male and female figs are adaptations to the fulfillment of its respective reproduction.  相似文献   

5.
徐睿  张媛  彭艳琼  杨大荣 《生态学报》2016,36(4):1134-1140
榕树及其专一性传粉榕小蜂组成了动植物界最为经典的协同进化关系,传粉榕小蜂演化出欺骗性是非常罕见的。在雌雄同株的高榕隐头果内,共存着一种传粉榕小蜂Eupristina altissima和一种欺骗性的小蜂Eupristina sp.,两种小蜂在雌花期进入隐头果内繁殖,但有不同的繁殖特点。对比研究了两种小蜂从成虫羽化到产卵和传粉这个阶段的雌蜂个体大小、孕卵量及繁殖差异,结果表明:羽化期两种雌蜂的平均个体小,经飞行小个体的雌蜂易死亡,大个体雌蜂到达接受树,但通过苞片通道,一些个体较大的传粉榕小蜂被夹死导致进入果腔的雌蜂相对小,而欺骗性小蜂易通过苞片以至进入果腔的雌蜂个体较大。两种未产卵雌蜂均表现为个体大者孕卵量较多,但两种雌蜂的平均孕卵量没有差异。即使有充足雌花资源产卵,两种雌蜂均未产完所有卵,产卵后两种雌蜂卵巢中的卵量均显著减少,遗留下的卵量两种小蜂间没有差异。传粉榕小蜂只有部分个体传完所携带花粉,并表现为传粉越成功的雌蜂,产卵越多。存在种内竞争时,两种小蜂的产卵量均减少,传粉榕小蜂的传粉效率也降低。在种间竞争背景下,欺骗性小蜂产卵更成功,传粉榕小蜂的产卵和传粉量均受到极大抑制。研究结果说明雌花期隐头果内传粉榕小蜂只适量利用雌花资源产卵繁殖后代,更有效地传粉繁殖榕树种子,这可能是维持榕-蜂互惠系统稳定共存的重要机制之一;欺骗者稳定存在需降低与传粉者的直接竞争,而欺骗者和传粉者分散在不同果内,甚至是不同的树上繁殖是理想的繁殖策略。  相似文献   

6.
7.
Most plants are pollinated passively, but active pollination has evolved among insects that depend on ovule fertilization for larval development. Anther‐to‐ovule ratios (A/O ratios, a coarse indicator of pollen‐to‐ovule ratios) are strong indicators of pollination mode in fig trees and are consistent within most species. However, unusually high values and high variation of A/O ratios (0.096–10.0) were detected among male plants from 41 natural populations of Ficus tikoua in China. Higher proportions of male (staminate) flowers were associated with a change in their distribution within the figs, from circum‐ostiolar to scattered. Plants bearing figs with ostiolar or scattered male flowers were geographically separated, with scattered male flowers found mainly on the Yungui Plateau in the southwest of our sample area. The A/O ratios of most F. tikoua figs were indicative of passive pollination, but its Ceratosolen fig wasp pollinator actively loads pollen into its pollen pockets. Additional pollen was also carried on their body surface and pollinators emerging from scattered‐flower figs had more surface pollen. Large amounts of pollen grains on the insects' body surface are usually indicative of a passive pollinator. This is the first recorded case of an actively pollinated Ficus species producing large amounts of pollen. Overall high A/O ratios, particularly in some populations, in combination with actively pollinating pollinators, may reflect a response by the plant to insufficient quantities of pollen transported in the wasps’ pollen pockets, together with geographic variation in this pollen limitation. This suggests an unstable scenario that could lead to eventual loss of wasp active pollination behavior.  相似文献   

8.
Some female pollinating fig wasps (foundresses) re-emerge from figs after oviposition/pollination. We investigated why this occurs in the mutualism between the gynodioecious Ficus montana and Liporrhopalum tentacularis. Re-emergence increased with foundress density in figs and some foundresses oviposited in two male figs, indicating that they re-emerge because of oviposition site limitation. Re-emergence was independent of fig diameter, indicating that permeability is not because of fig age at entry. Rather, as some foundresses also pollinate two female figs we suggest permeability is selected for because it increases pollinator production and/or efficiency (although, potentially opposing these hypotheses, we also found between-tree differences in permeability in male figs). In addition, we show that re-emergence is much more common than previously suspected, and more common from gynodioecious than monoecious fig species. We argue that our findings in F. montana could explain this pattern of incidence.  相似文献   

9.
The obligate mutualism of figs and fig‐pollinating wasps has been one of the classic models used for testing theories of co‐evolution and cospeciation due to the high species‐specificity of these relationships. To investigate the species‐specificity between figs and fig pollinators and to further understand the speciation process in obligate mutualisms, we examined the genetic differentiation and phylogenetic relationships of four closely related fig‐pollinating wasp species (Blastophaga nipponica, Blastophaga taiwanensis, Blastophaga tannoensis and Blastophaga yeni) in Japan and Taiwan using genome‐wide sequence data, including mitochondrial DNA sequences. In addition, population structure was analysed for the fig wasps and their host species using microsatellite data. The results suggest that the three Taiwanese fig wasp species are a single panmictic population that pollinates three dioecious fig species, which are sympatrically distributed, have large differences in morphology and ecology and are also genetically differentiated. Our results illustrate the first case of pollinator sharing by host shift in the subgenus Ficus. On the other hand, there are strict genetic codivergences between allopatric populations of the two host–pollinator pairs. The possible processes that produce these pollinator‐sharing events are discussed based on the level and pattern of genetic differentiation in these figs and fig wasps.  相似文献   

10.
2004年8月至2005年8月在西双版纳热带植物园内,通过广泛收集歪叶榕榕小蜂标本、非传粉小蜂产卵行为学观察和阻止传粉者入果等实验方法,研究了我国西双版纳热带雨林下的一种榕树——歪叶榕Ficus cyrtophylla的榕小蜂群落组成结构、非传粉小蜂的繁殖策略以及它们对榕-蜂共生系统的影响。结果表明,歪叶榕中除了具有唯一传粉榕小蜂Blastophag sp.以外,还具有3种非传粉小蜂Platyneura sp.、Philotrypesis sp.和Sycoscapter sp.。在歪叶榕榕小蜂群落中,传粉榕小蜂占整个群落总数的92.21%,是群落的最主要组成者;主要的非传粉小蜂是Sycoscaptersp.,占5.78%; 其次是Philotrypesissp.,占1.84%,而Platyneurasp.仅占群落总数的0.17%。歪叶榕中的非传粉小蜂通过各自产卵时间和食性分化的策略来利用榕果中的资源繁殖后代。非传粉小蜂寄生使传粉榕小蜂的总数和其雌蜂数量都显著地降低,但是对传粉小蜂雄蜂数量没有显著影响,从而导致传粉榕小蜂的雄性性比显著地增加。这说明非传粉小蜂在选择寄居宿主时具有明显的倾向性,而且更多地将卵产于含有雌性传粉小蜂的瘿花之中。因此,非传粉小蜂通过减少雌性传粉小蜂的数量而降低了榕树的雄性适合度,从而在一定程度上对榕 蜂共生系统的稳定存在和发展产生了负面影响。  相似文献   

11.
The obligate mutualism between pollinating fig wasps in the family Agaonidae (Hymenoptera: Chalcidoidea) and Ficus species (Moraceae) is often regarded as an example of co-evolution but little is known about the history of the interaction, and understanding the origin of functionally dioecious fig pollination has been especially difficult. The phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus were inferred from mitochondrial cytochrome oxidase gene sequences (mtDNA) and morphology. Separate and combined analyses indicated that the pollinators of functionally dioecious figs are not monophyletic. However, pollinator relationships were generally congruent with host phylogeny and support a revised classification of Ficus. Ancestral changes in pollinator ovipositor length also correlated with changes in fig breeding systems. In particular, the relative elongation of the ovipositor was associated with the repeated loss of functionally dioecious pollination. The concerted evolution of interacting morphologies may bias estimates of phylogeny based on female head characters, but homoplasy is not so strong in other morphological traits. The lesser phylogenetic utility of morphology than of mtDNA is not due to rampant convergence in morphology but rather to the greater number of potentially informative characters in DNA sequence data; patterns of nucleotide substitution also limit the utility of mtDNA findings. Nonetheless, inferring the ancestral associations of fig pollinators from the best-supported phylogeny provided strong evidence of host conservatism in this highly specialized mutualism.  相似文献   

12.
Mutualisms involve cooperation between species and underpin several ecosystem functions. However, there is also conflict between mutualists, because their interests are not perfectly aligned. In addition, most mutualisms are exploited by parasites. Here, we study the interplay between cooperation, conflict and parasitism in the mutualism between fig trees and their pollinator wasps. Conflict occurs because each fig ovary can nurture either one seed or one pollinator offspring and, while fig trees benefit directly from seeds and pollinator offspring (pollen vectors), pollinators only benefit directly from pollinator offspring. The mechanism(s) of conflict resolution is debated, but must explain the widespread observation that pollinators develop in inner, and seeds in outer, layers of fig flowers. We recently suggested a role for non‐pollinating figs wasps (NPFWs) that are natural enemies or competitors of the pollinators and lay their eggs through the fig wall. Most NPFW offspring develop in outer and middle layer flowers, suggesting that inner flowers provide enemy‐free space for pollinator offspring. Here, we test the hypothesis that NPFWs cannot reach inner flowers, by measuring wasp and fig morphology at the species‐specific times of NPFW attack in the field. We found that three species of Sycoscapter and Philotrypesis wasps that parasitise pollinators could reach 34–73%, 75–92% and 82–97% of fig ovaries, respectively. Meanwhile, Eukobelea and Pseudidarnes gall‐formers, despite having shorter ovipositors, can access almost all fig flowers (93–99% and 100%), because they attack smaller (younger) fig fruits. Our mechanistic results from ovipositing wasps support spatial patterns of wasp offspring segregation within figs to suggest that inner ovules provide enemy‐free‐space for pollinators. This may contribute to mutualism stability by helping select for pollinators to avoid laying eggs where they are likely to be parasitised. These outer flowers then remain free to develop as seeds, promoting mutualism persistence.  相似文献   

13.
Fig trees (Ficus: Moraceae) are pollinated by female fig wasps (Agaonidae) whose larvae develop inside galled flowers of unusual inflorescences (figs). Most fig trees also support communities of non‐pollinating fig wasps. Figs of different species display great size variation and contain tens to tens of thousands of flowers. Around one‐half the species of fig trees have the gynodioecious breeding system, where female trees have figs that produce seeds and male trees have figs that support development of pollinators. Mutual mimicry between receptive male and female figs ensures that pollinators enter female figs, even though the insects will die without reproducing, but the need to give no sex‐specific cues to the pollinators may constrain differences in size between receptive male and female figs. We compared relationships between inflorescence size and some measures of reproductive success in male and female figs of Ficus montana grown under controlled conditions in the presence of the pollinator Kradibia tentacularis and its main parasitoid Sycoscapter sp. indesc. Female figs that contained more flowers produced more seeds, but male figs did not increase the production of female pollinator K. tentacularis fig wasps in proportion of the flower number. Although more flowers were galled by the pollinators in male figs containing more female flowers, the high larval mortality caused by parasitism and nutritional limitation prevented the increase in the production of adult female offspring. Selection may favor the increase in flower numbers within figs in female plants of F. montana, but contrarily constrain this attribute in male plants.  相似文献   

14.
In the dioecious fig/pollinator mutualism, the female wasps that pollinate figs on female trees die without reproducing, whereas wasps that pollinate figs on male trees produce offspring. Selection should strongly favour wasps that avoid female figs and enter only male figs. Consequently, fig trees would not be pollinated and fig seed production would ultimately cease, leading to extinction of both wasp and fig. We experimentally presented pollinators in the wild (southern India) with a choice between male and female figs of a dioecious fig species, Ficus hispida L. Our results show that wasps do not systematically discriminate between sexes of F. hispida. We propose four hypotheses to explain why wasp choice has not evolved, and how a mutualism is thus maintained in which all wasps that pollinate female figs have zero fitness.  相似文献   

15.
薜荔和爱玉子均属雌雄异株桑科榕属植物,两者互为原变种与变种的关系,分别与薜荔传粉小蜂和爱玉子传粉小蜂(二者互为隐存种)建立了专性共生关系,榕树榕果挥发物在维系传粉小蜂与其寄主的共生关系上起着重要作用。利用Y型嗅觉仪测定薜荔榕小蜂(薜荔和爱玉子的传粉小蜂)对薜荔和爱玉子雌花期榕果挥发物的行为反应。结果表明:(1)雌花期果型的大小对薜荔榕小蜂行为反应无显著影响,薜荔大、小果型雌花期雌(雄)榕果挥发物对其传粉小蜂均具有强烈的吸引作用;(2)榕果挥发物浓度影响薜荔榕小蜂行为反应,薜荔、爱玉子雌花期雌(雄)榕果挥发物对其传粉小蜂的吸引作用均可能存在阈值反应,即榕果挥发物浓度未超过阈值时,雌花期榕果挥发物对传粉小蜂的吸引作用与挥发物浓度成正相关关系,而一旦超过阈值,榕果挥发物对传粉蜂的吸引作用显著下降,表明寄主榕果挥发物浓度影响传粉小蜂的寄主定位;(3)薜荔传粉小蜂对低浓度爱玉子雌花期雌(雄)榕果挥发物、爱玉子传粉小蜂对低浓度薜荔雌花期雌(雄)榕果挥发物均既无趋向也无驱避行为;薜荔传粉小蜂对高浓度的爱玉子雌花期雌(雄)榕果挥发物表现为显著的驱避行为,而爱玉子传粉小蜂对高浓度薜荔雌(雄)雌花期榕果挥发物表现为显著的趋向行为,因此,薜荔传粉小蜂与爱玉子传粉小蜂存在寄主专一性不对称现象,爱玉子传粉小蜂进入薜荔雌(雄)果内传粉或产卵的可能性较大,而福州地区的薜荔传粉小蜂可能难以进入爱玉子雌(雄)果内传粉或产卵。本研究结果将为榕-蜂共生体系的化学生态学理论研究以及爱玉子栽培提供科学依据。  相似文献   

16.
The interaction between figs (Ficus spp., Moraceae) and their pollinator fig wasps (Hymenoptera: Agaonidae) is an obligate mutualism, but females of dioecious fig trees exploit fig wasps without providing rewards. Figs are closed inflorescences that typically trap pollinator females after entry, but some fig wasp species can re‐emerge (although wingless) and subsequently oviposit in and pollinate further figs. Using glasshouse populations, we examined the sex ratios and clutches laid by single foundresses of Kradibia tentacularis (Grandi) in their first and subsequent male figs of Ficus montana Blume, and how the probability of emergence and entering a second fig varied between seasons. A maximum of four figs were entered by any one foundress. Wingless foundresses were able to locate and enter figs up to 60 cm from the first fig they entered, but the probability of entry declined sharply with distance from that fig. The foundresses that re‐emerged produced slightly higher adult offspring totals than those that failed to re‐emerge. Clutch sizes of a single foundress in its first fig equalled those in all the subsequent figs combined, with clutch size per fig decreasing when more figs were entered. Smaller clutches had less female‐biased sex ratios. Figs were more numerous in summer than in winter, but the proportion of figs entered by only wingless foundresses remained unchanged. Movement between figs increases pollinator reproductive success in male figs, thereby encouraging foundresses that encounter a female tree to also move between and pollinate several female figs.  相似文献   

17.
While Ficus present a series of traits often associated with dioecy, the prevalence of dioecy in Ficus is atypical. In Asian floras, dioecious Ficus species generally outnumber monoecious ones. Further this is also true in relatively northerly locations for Ficus such as the island of Taiwan. Ficus are pollinated by species-specific wasps that use fig flowers as breeding sites. In dioecious fig species, pollinators develop only in the inflorescences of male fig trees. In this study, we investigated the reproductive phenology of four dioecious Ficus species with distinct ecologies in several locations in northern and southern Taiwan. The two first species (Ficus erecta and Ficus septica) were investigated in four locations. Reproductive phenology was quite different among sites, even within a single species. For example, F. erecta presented well-defined crops at the population level in its usual high-elevation habitat but continuous fig production at low elevations, especially in South Taiwan. The two other fig species (Ficus pedunculosa var. mearnsii and Ficus tinctoria subsp. swinhoei), are shrubs growing together along seashores in exposed locations on coral reef remnants. These two species presented quite different traits allowing the survival of pollinating wasp populations. Ficus pedunculosa var. mearnsii produced figs continuously so that fresh receptive figs were always available for the pollinating wasps while F. tinctoria subsp. swinhoei extended the period of receptivity of its figs, so that receptive figs that had been waiting for pollinating wasps were almost always available. In summary, dioecious figs in Taiwan showed remarkable variation in their phenology, within species among locations or among species within location. Nevertheless, despite this variation, the phenology of the trees always allowed survival of pollinating wasp populations. Dioecious figs seem to have adopted a differentiated set of strategies which result in high resilience of pollinator populations. This resilience could help explain the atypical prevalence of dioecy in Ficus.  相似文献   

18.
雀榕及其传粉昆虫传粉生态研究   总被引:13,自引:0,他引:13  
陈勇  李宏庆  马炜梁 《生态学报》2001,21(10):1569-1574
雀榕(Ficus virens)花是单性的,雌雄同株,每一个隐头花序里同时具有雌花和雄花,雌花有长柱花和短柱花(瘿花)的分化,但二者均能结实和形成虫瘿,在生理上仍未分离,在这些花序中生长着4种小蜂总科的昆虫,其中榕小蜂科的2个种是雀榕的传粉省,尤以雀榕小蜂(Blastophagea sp.)为雀榕的主要传粉者,是共生体系的真正的互惠共生伙伴,冠缝榕小蜂(B.coronata)则是次要的传粉者也是主要传粉者的竞争者,食榕小蜂(Sycophila sp.)和刻腹小蜂(Ormyrus sp.)是上述2种榕小蜂的寄生者,但是刻腹小蜂的雄蜂也能参与出飞孔开掘,首次报道了我国雌雄同株的榕属植物和传粉昆虫的季节性环境胁迫下的共生关系,并探讨了共生体系维持的对策。  相似文献   

19.
榕-蜂共生系统是桑科榕属(Ficus)植物与传粉榕小蜂专一互惠形成的生态学关系。但是,也有一些非传粉的小蜂出现在这个系统中,对榕-蜂共生系统可能产生较大的影响。西双版纳的聚果榕(Ficus racemosa)树上主要有5种非传粉小蜂,分别在榕果发育的不同阶段从果外向果内产卵。在传粉榕小蜂进果之前的花前期,Platyneura testaceApocrypta sp.和P. mayri这3种非传粉小蜂先后到果外产卵繁殖后代,对榕-蜂共生系统造成显著影响,尤其是影响传粉榕小蜂的繁殖。在传粉榕小蜂进果之后的间花期,P. mayriA. westwoodiP. agraensis这3种非传粉小蜂相继到果外产卵,它们虽然能减少种子形成和传粉榕小蜂繁殖的数量,但最终没有对榕-蜂共生系统造成显著的影响。造瘿类的P. mayri可在花前期和间花期产卵繁殖,在花前期产卵时它主要是影响传粉榕小蜂的繁殖,而在间花期产卵时它则更多地是影响种子的生产。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号