共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
As a punishment for his trickery, King Sisyphus was made to endlessly roll a huge boulder up a steep hill. The maddening nature of the punishment was reserved for King Sisyphus due to his hubristic belief that his cleverness surpassed that of Zeus himself. Today’s scientists also pay a heavy price for their hubris and narcissism. They try to trick the editors of a few ‘top’ journals by peppering their papers with glitter and ‘bling-bling’, making overblown promises, and giving minimal credit to their predecessors. The editors wield their Olympian authority by making today’s scientists endlessly push their weighty boulders up steep hills. By bowing to this implacable ritual, we scientists confer undue power to a handful of popular but irresponsible journals. 相似文献
3.
Proteostasis is maintained by a network of molecular chaperones, a prominent member of which is the 90-kilodalton heat shock protein Hsp90. The chaperone function of Hsp90 has been extensively reviewed previously, emphasizing its ATPase activity and remodeling of folded client proteins. Experimental evidence implicating Hsp90 in neurodegenerative diseases has bolstered interest in the noncanonical chaperoning of intrinsically disordered protein (IDPs), however the interplay between Hsp90 and its disordered clients remains poorly understood. In this review we describe recent advances that have contributed to our understanding of the intricate mechanisms characterizing Hsp90-mediated chaperoning of the IDPs tau and α-synuclein and survey emerging insights into the modulation of the chaperone-client interplay in the context of neurodegeneration. 相似文献
4.
5.
Maximilian O. Press Hui Li Nicole Creanza Günter Kramer Christine Queitsch Victor Sourjik Elhanan Borenstein 《PLoS genetics》2013,9(7)
The molecular chaperone Hsp90 is essential in eukaryotes, in which it facilitates the folding of developmental regulators and signal transduction proteins known as Hsp90 clients. In contrast, Hsp90 is not essential in bacteria, and a broad characterization of its molecular and organismal function is lacking. To enable such characterization, we used a genome-scale phylogenetic analysis to identify genes that co-evolve with bacterial Hsp90. We find that genes whose gain and loss were coordinated with Hsp90 throughout bacterial evolution tended to function in flagellar assembly, chemotaxis, and bacterial secretion, suggesting that Hsp90 may aid assembly of protein complexes. To add to the limited set of known bacterial Hsp90 clients, we further developed a statistical method to predict putative clients. We validated our predictions by demonstrating that the flagellar protein FliN and the chemotaxis kinase CheA behaved as Hsp90 clients in Escherichia coli, confirming the predicted role of Hsp90 in chemotaxis and flagellar assembly. Furthermore, normal Hsp90 function is important for wild-type motility and/or chemotaxis in E. coli. This novel function of bacterial Hsp90 agreed with our subsequent finding that Hsp90 is associated with a preference for multiple habitats and may therefore face a complex selection regime. Taken together, our results reveal previously unknown functions of bacterial Hsp90 and open avenues for future experimental exploration by implicating Hsp90 in the assembly of membrane protein complexes and adaptation to novel environments. 相似文献
6.
7.
The heat shock protein 90 plays a pivotal role in the life cycle control of Leishmania donovani promoting the fast‐growing insect stage of this parasite. Equally important for insect stage growth is the co‐chaperone Sti1. We show that replacement of Sti1 is only feasible in the presence of additional Sti1 transgenes indicating an essential role. To better understand the impact of Sti1 and its interaction with Hsp90, we performed a mutational analysis of Hsp90. We established that a single amino acid exchange in the Leishmania Hsp90 renders that protein resistant to the inhibitor radicicol (RAD), yet does not interfere with its functionality. Based on this RAD‐resistant Hsp90, we established a combined chemical knockout/gene complementation (CKC) approach. We can show that Hsp90 function is required in both insect and mammalian life stages and that the Sti1‐binding motif of Hsp90 is crucial for proliferation of insect and mammalian stages of the parasite. The Sti1‐binding motif in Leishmania Hsp90 is suboptimal – optimizing the motif increased initial intracellular proliferation underscoring the importance of the Hsp90–Sti1 interaction for this important parasitic protozoan. The CKC strategy we developed will allow the future analysis of more Hsp90 domains and motifs in parasite viability and infectivity. 相似文献
8.
Shanshan Liu Timothy O. Street 《Protein science : a publication of the Protein Society》2016,25(12):2209-2215
The molecular chaperone Hsp90 facilitates the folding and modulates activation of diverse substrate proteins. Unlike other heat shock proteins such as Hsp60 and Hsp70, Hsp90 plays critical regulatory roles by maintaining active states of kinases, many of which are overactive in cancer cells. Four Hsp90 paralogs are expressed in eukaryotic cells: Hsp90α/β (in the cytosol), Grp94 (in the endoplasmic reticulum), Trap1 (in mitochondria). Although numerous Hsp90 inhibitors are being tested in cancer clinical trials, little is known about why different Hsp90 inhibitors show specificity among Hsp90 paralogs. The paralog specificity of Hsp90 inhibitors is likely fundamental to inhibitor efficacy and side effects. In hopes of gaining insight into this issue we examined NECA (5′‐N‐ethylcarboxamidoadenosine), which has been claimed to be an example of a highly specific ligand that binds to one paralog, Grp94, but not cytosolic Hsp90. To our surprise we find that NECA inhibits many different Hsp90 proteins (Grp94, Hsp90α, Trap1, yeast Hsp82, bacterial HtpG). NMR experiments demonstrate that NECA can bind to the N‐terminal domains of Grp94 and Hsp82. We use ATPase competition experiments to quantify the inhibitory power of NECA for different Hsp90 proteins. This scale: Hsp82 > Hsp90α > HtpG ≈ Grp94 > Trap1, ranks Grp94 as less sensitive to NECA inhibition. Because NECA is primarily used as an adenosine receptor agonist, our results also suggest that cell biological experiments utilizing NECA may have confounding effects from cytosolic Hsp90 inhibition. 相似文献
9.
Timothy O. Street Xiaohui Zeng Riccardo Pellarin Massimiliano Bonomi Andrej Sali Mark J.S. Kelly Feixia Chu David A. Agard 《Journal of molecular biology》2014
Hsp90 is a conformationally dynamic molecular chaperone known to promote the folding and activation of a broad array of protein substrates (“clients”). Hsp90 is believed to preferentially interact with partially folded substrates, and it has been hypothesized that the chaperone can significantly alter substrate structure as a mechanism to alter the substrate functional state. However, critically testing the mechanism of substrate recognition and remodeling by Hsp90 has been challenging. Using a partially folded protein as a model system, we find that the bacterial Hsp90 adapts its conformation to the substrate, forming a binding site that spans the middle and C-terminal domains of the chaperone. Cross-linking and NMR measurements indicate that Hsp90 binds to a large partially folded region of the substrate and significantly alters both its local and long-range structure. These findings implicate Hsp90's conformational dynamics in its ability to bind and remodel partially folded proteins. Moreover, native-state hydrogen exchange indicates that Hsp90 can also interact with partially folded states only transiently populated from within a thermodynamically stable, native-state ensemble. These results suggest a general mechanism by which Hsp90 can recognize and remodel native proteins by binding and remodeling partially folded states that are transiently sampled from within the native ensemble. 相似文献
10.
Jian Yang Xiaomin Song Yang Chen Xin‐an Lu Yan Fu Yongzhang Luo 《Traffic (Copenhagen, Denmark)》2014,15(8):861-878
The 90‐kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF‐mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca2+ and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell‐surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ‐induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1–PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis. 相似文献
11.
High affinity binding of Hsp90 is triggered by multiple discrete segments of its kinase clients 总被引:1,自引:0,他引:1
Scroggins BT Prince T Shao J Uma S Huang W Guo Y Yun BG Hedman K Matts RL Hartson SD 《Biochemistry》2003,42(43):12550-12561
The 90 kDa heat shock protein (Hsp90) cooperates with its co-chaperone Cdc37 to provide obligatory support to numerous protein kinases involved in the regulation of cellular signal transduction pathways. In this report, crystal structures of protein kinases were used to guide the dissection of two kinases [the Src-family tyrosine kinase, Lck, and the heme-regulated eIF2alpha kinase (HRI)], and the association of Hsp90 and Cdc37 with these constructs was assessed. Hsp90 interacted with both the N-terminal (NL) and C-terminal (CL) lobes of the kinases' catalytic domains. In contrast, Cdc37 interacted only with the NL. The Hsp90 antagonist molybdate was necessary to stabilize the interactions between isolated subdomains and Hsp90 or Cdc37, but the presence of both lobes of the kinases' catalytic domain generated a stable salt-resistant chaperone-client heterocomplex. The Hsp90 co-chaperones FKBP52 and p23 interacted with the catalytic domain and the NL of Lck, whereas protein phosphatase 5 demonstrated unique modes of kinase binding. Cyp40 was a salt labile component of Hsp90 complexes formed with the full-length, catalytic domains, and N-terminal catalytic lobes of Lck and HRI. Additionally, dissections identify a specific kinase motif that triggers Hsp90's conformational switching to a high-affinity client binding state. Results indicate that the Hsp90 machine acts as a versatile chaperone that recognizes multiple regions of non-native proteins, while Cdc37 binds to a more specific kinase segment, and that concomitant recognition of multiple client segments is communicated to generate or stabilize high-affinity chaperone-client heterocomplexes. 相似文献
12.
13.
The pathogenic fungi Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans are an increasing cause of human mortality, especially in immunocompromised populations. During colonization and adaptation to various host environments, these fungi undergo morphogenetic alterations that allow for survival within the host. One key environmental cue driving morphological changes is external temperature. The Hsp90 chaperone protein provides one mechanism to link temperature with the signalling cascades that regulate morphogenesis, fungal development and virulence. Candida albicans is a model system for understanding the connections between morphogenesis and Hsp90. Due to the high degree of conservation in Hsp90, many of the connections in C. albicans may be extrapolated to other fungal pathogens or parasites. Examining the role of Hsp90 during development and morphogenesis in these three major fungal pathogens may provide insight into key aspects of adaptation to the host, leading to additional avenues for therapy. 相似文献
14.
《Journal of molecular biology》2019,431(15):2729-2746
Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90–Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70–Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein–protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling. 相似文献
15.
Tumor suppressor Tsc1 is a new Hsp90 co‐chaperone that facilitates folding of kinase and non‐kinase clients 下载免费PDF全文
Elijah Marris Diana M Dunn Adam R Blanden Ryan L Murphy Nicholas Rensing Oleg Shapiro Barry Panaretou Chrisostomos Prodromou Stewart N Loh David H Gutmann Dimitra Bourboulia Gennady Bratslavsky Michael Wong Mehdi Mollapour 《The EMBO journal》2017,36(24):3650-3665
The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat‐shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co‐chaperone for Hsp90 that inhibits its ATPase activity. The C‐terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co‐chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1‐Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co‐chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90‐mediated folding of kinase and non‐kinase clients—including Tsc2—thereby preventing their ubiquitination and proteasomal degradation. 相似文献
16.
17.
《Journal of molecular biology》2023,435(17):168184
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70. 相似文献
18.
Sreedhar AS Mihály K Pató B Schnaider T Steták A Kis-Petik K Fidy J Simonics T Maraz A Csermely P 《The Journal of biological chemistry》2003,278(37):35231-35240
The 90 kDa heat shock protein, Hsp90, is an abundant molecular chaperone participating in the cytoprotection of eukaryotic cells. Here we analyzed the involvement of Hsp90 in the maintenance of cellular integrity using partial cell lysis as a measure. Inhibition of Hsp90 by geldanamycin, radicicol, cisplatin, and novobiocin induced a significant acceleration of detergent- and hypotonic shock-induced cell lysis. The concentration and time dependence of cell lysis acceleration was in agreement with the Hsp90 inhibition characteristics of the N-terminal inhibitors, geldanamycin and radicicol. Glutathione and other reducing agents partially blocked geldanamycin-induced acceleration of cell lysis but were largely ineffective with other inhibitors. Indeed, geldanamycin treatment led to superoxide production and a change in membrane fluidity. When Hsp90 content was diminished using anti-Hsp90 hammerhead ribozymes, an accelerated cell lysis was also observed. Hsp90 inhibition-induced cell lysis was more pronounced in eukaryotic (yeast, mouse red blood, and human T-lymphoma) cells than in bacteria. Our results indicate that besides the geldanamycin-induced superoxide production, and a consequent increase in cell lysis, inhibition or lack of Hsp90 alone can also compromise cellular integrity. Moreover, cell lysis after hypoxia and complement attack was also enhanced by any type of Hsp90 inhibition used, which shows that the maintenance of cellular integrity by Hsp90 is important in physiologically relevant lytic conditions of tumor cells. 相似文献
19.
Kai Sun Xuan Wang Na Fang Ao Xu Yao lin Xiaofang Zhao Adil J. Nazarali Shaoping Ji 《Journal of cellular and molecular medicine》2020,24(13):7439-7450
SIRT2 is a NAD+‐dependent deacetylase that deacetylates a diverse array of protein substrates and is involved in many cellular processes, including regulation of inflammation. However, its precise role in the inflammatory process has not completely been elucidated. Here, we identify heat‐shock protein 90α (Hsp90α) as novel substrate of SIRT2. Functional investigation suggests that Hsp90 is deacetylated by SIRT2, such that overexpression and knock‐down of SIRT2 altered the acetylation level of Hsp90. This subsequently resulted in disassociation of Hsp90 with glucocorticoid receptor (GR), and translocation of GR to the nucleus. This observation was further confirmed by glucocorticoid response element (GRE)‐driven reporter assay. Nuclear translocation of GR induced by SIRT2 overexpression repressed the expression of inflammatory cytokines, which were even more prominent under lipopolysaccharide (LPS) stimulation. Conversely, SIRT2 knock‐down resulted in the up‐regulation of cytokine expression. Mutation analysis indicated that deacetylation of Hsp90 at K294 is critical for SIRT2‐mediated regulation of cytokine expression. These data suggest that SIRT2 reduces the extent of LPS‐induced inflammation by suppressing the expression of inflammatory factors via SIRT2‐Hsp90‐GR axis. 相似文献
20.
Picard D 《Nature cell biology》2004,6(6):479-480
Metalloproteases are required for the invasive nature of cancer cells. Surprisingly, the cytosolic molecular chaperone Hsp90 is now shown to promote maturation of the extracellular metalloprotease MMP2. This finding extends the multiplicity of roles assigned to the Hsp90 family to a new function outside the cell. 相似文献