首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we used a 16S rDNA–based approach to determine bacterial populations associated with coho salmon (Oncorhynchus kisutch) in its early life stages, highlighting dominant bacteria in the gastrointestinal tract during growth in freshwater. The present article is the first molecular analysis of bacterial communities of coho salmon. Cultivability of the salmon gastrointestinal microbiota was estimated by comparison of direct microscopic counts (using acridine orange) with colony counts (in tryptone soy agar). In general, a low fraction (about 1%) of the microbiota could be recovered as cultivable bacteria. Using DNA extracted directly from individuals belonging to the same lot, bacterial communities present in eggs and gastrointestinal tract of first-feeding fries and juveniles were monitored by polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE). The DGGE profiles revealed simple communities in all stages and exposed changes in bacterial community during growth. Sequencing and phylogenetic analysis of excised DGGE bands revealed the nature of the main bacteria found in each stage. In eggs, the dominant bacteria belonged to β-Proteobacteria (Janthinobacterium and Rhodoferax). During the first feeding stage, the most abundant bacteria in the gastrointestinal tract clustered with γ-Proteobacteria (Shewanella and Aeromonas). In juveniles ranging from 2 to 15 g, prevailing bacteria were Pseudomonas and Aeromonas. To determine the putative origin of dominant Pseudomonas and Aeromonas found in juvenile gastrointestinal tracts, primers for these groups were designed based on sequences retrieved from DGGE gel. Subsequently, samples of the water influent, pelletized feed, and eggs were analyzed by PCR amplification. Only those amplicons obtained from samples of eggs and the water influent presented identical sequences to the dominant bands of DGGE. Overall, our results suggest that a stable microbiota is established after the first feeding stages and its major components could be derived from water and egg epibiota.  相似文献   

2.
Bacterioneuston may play a key role in water–air exchange of gases and in processing organic matter and pollutants that accumulate at the sea-surface microlayer (SML). However, the phylogenetic diversity of bacterioneuston has been poorly characterized. We analyzed 24 samples each from the SML and underlying water (UW) at three sites in the Ria de Aveiro estuary, Portugal. Cultivation and culture-independent techniques were used to compare bacterioneuston and bacterioplankton. Culturable heterotrophic bacteria were enriched in the SML. The culturable community was dominated by Psychrobacter and Acinetobacter. The presence of high numbers of Psychrobacter was a notable result. Differences were confined to a few genera overrepresented in UW samples (Kocuria, Agrococcus and Vibrio). 16S rDNA DGGE profiles were highly stable in terms of number and position of bands between sampling sites and dates but cluster analysis revealed a slight tendency for grouping according to sampled layer. SML-specific DGGE bands affiliated with Actinobacteria, Cyanobacteria, Gammaproteobacteria and Bacteroidetes. Low similarity between nucleotide sequences of DGGE-bands and previously reported sequences suggest the occurrence of SML-specific populations. Enrichment of SML for Pseudomonas and Aeromonas was questioned and the diversity of both communities was analyzed. Consistent differences between SML and UW aeromonads communities were not identified. In terms of Pseudomonas, a culturable operational taxonomic unit was consistently overrepresented within SML samples. Taken together, our results indicate that the similarity between SML and UW communities depends on spatial and temporal factors.  相似文献   

3.
The community structure of bacterioplankton in meromictic Lake Saelenvannet was examined by PCR amplification of the V3 region of 16S rRNA from microbial communities recovered from various depths in the water column. Two different primer sets were used, one for amplification of DNA from the domain Bacteria and another specific for DNA from the domain Archaea. Amplified DNA fragments were resolved by denaturing gradient gel electrophoresis (DGGE), and the resulting profiles were reproducible and specific for the communities from different depths. Bacterial diversity estimated from the number and intensity of specific fragments in DGGE profiles decreased with depth. The reverse was true for the Archaea, with the diversity increasing with depth. Hybridization of DGGE profiles with oligonucleotide probes specific for phylogenetic groups of microorganisms showed the presence of both sulfate-reducing bacteria and methanogens throughout the water column, but they appeared to be most abundant below the chemocline. Several dominant fragments in the DGGE profiles were excised and sequenced. Among the dominant populations were representatives related to Chlorobium phaeovibrioides, chloroplasts from eukaryotic algae, and unidentified Archaea.  相似文献   

4.
Aim: To characterize the microbial community structure and bamA gene diversity involved in anaerobic degradation of toluene and benzoate under denitrifying conditions. Methods and Results: Nitrate‐reducing enrichment cultures were established on either toluene, benzoate or without additional substrate. Bacterial community structures were characterized by 16S rRNA gene–based PCR‐DGGE analysis. bamA gene diversity was analysed using DGGE and cloning methods. The results showed that bamA gene related to bamA of Thauera chlorobenzoica was dominant in toluene and benzoate cultures. However, a greater diversity of sequences was obtained in benzoate cultures. Low diversity of bamA gene was observed, and some similarities of bamA were also found between active cultures and backgrounds, suggesting that potential natural attenuation of aromatic compounds might occur. Conclusions: The combined analysis of 16S rRNA and bamA genes suggests that the species related to genera Thauera dominated toluene‐ and benzoate‐degrading cultures. The combination of multiple methods (DGGE and cloning) provides a more complete picture of bamA gene diversity. Significance and Impact of the Study: To our knowledge, this is the first report of bamA gene in denitrifying enrichments using DGGE and cloning analysis.  相似文献   

5.
The bacterial communities in the food, intestines, and feces of earthworms were investigated by PCR-denaturing Gradient gel electrophoresis (DGGE). In this study, PCR-DGGE was optimized by testing 6 universal primer sets for microbial 16S rRNA in 6 pure culture strains of intestinal microbes in earthworms. One primer set effectively amplified 16S rRNA from bacterial populations that were found in the food, intestines, and feces of earthworms. Compared with the reference markers from the pure culture strains, the resulting DGGE profiles contained 28 unique DNA fragments. The dominant microorganisms in the food, intestines, and feces of earthworms included Rhodobacterales bacterium, Fusobacteria, Ferrimonas marina, Aeromonas popoffii, and soil bacteria. Other straisn, such as Acinetobacter, Clostridium, and Veillonella, as well as rumen bacteria and uncultured bacteria also were present. These results demonstrated that PCR-DGGE analysis can be used to elucidate bacterial diversity and identify unculturable microorganisms.  相似文献   

6.
The occurrence of Vibrio cholerae, an important aquatic pathogen, was assessed in the surface water of the Danube River near Bratislava. The isolates were distinguished by biochemical tests and grouped by ARDRA to three clusters corresponding to three species (V. cholerae, Vibrio metschnikovii, and Aeromonas spp.). The identification of V. cholerae was confirmed by multiplex PCR using primer pairs targeted to ompW gene (membrane protein), ctxA gene (toxicity gene), and toxR gene (regulatory gene). None from the isolated V. cholerae from surface water contained ctxA gene; seven of them possessed toxR gene. Serotyping of V. cholerae isolates with polyvalent O antiserum and O/139 antiserum was negative. All isolates of V. cholerae were susceptible to chloramphenicol, rifampicin, tetracycline, variable to ampicillin, and resistant to kanamycin and streptomycin.  相似文献   

7.
Molecular methods were used to characterize the diversity of a methanotrophic population in an agricultural soil. For this purpose we have used DGGE analysis of functional and phylogenetic markers. Functional markers utilised comprised the pmoA-gene coding for the -subunit of the particulate methane monooxygenase (pMMO) present in all known methanotrophs and the mxaF-gene coding for the -subunit of methanol dehydrogenase (MDH) present in all Gram-negative methylotrophs. In addition, we have used 16S rDNA as a phylogenetic marker. DGGE patterns of an enrichment culture, and sequencing of major DGGE bands obtained with the bacterial specific primers showed that the community structure was dominated by methanotrophic populations related to Methylobacter sp. and Methylomicrobium sp. The PCR products amplified with the functional primer sets were related to both type I and type II methanotrophs. We also designed a new pmoA-targeting primer set which could be used in a nested protocol to amplify PCR-products from DNA extracted directly from the soil.  相似文献   

8.
Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur‐oxidizing (SOB) and sulphate‐reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real‐time polymerase chain reaction (qPCR), polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) and clone libraries, using genes for the enzymes adenosine‐5′‐phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR‐DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests.  相似文献   

9.
10.
PCR-based methods of fingerprinting take advantage of the presence of repetitive sequences that are interspersed throughout the genome of diverse bacterial species. They include the repetitive extragenic palindromic (REP) sequence, the enterobacterial repetitive intergenic consensus sequence (ERIC) and the 154-bp BOX element. The combination of the three methods is used for fine discrimination of strains and is designated as rep-polymerase chain reaction (PCR). REP-PCR and ERIC-PCR have been shown to be useful for typing Aeromonas strains. To our knowledge, rep-PCR fingerprinting method using the BOXA1R primer has never been tested on aeromonads. In this study, the BOX-PCR fingerprinting technique was evaluated for the discrimination of strains of some Aeromonas species. All strains were typeable and the majority showed unique banding patterns. Four strains from culture collections were used to investigate the reproducibility of the method. According to our results, BOX-PCR fingerprinting is applicable for typing of Aeromonas strains and can be considered as a useful complementary tool for epidemiological studies of members of this genus.  相似文献   

11.
Plankton communities in eight lakes of different trophic status near Yangtze, China were charac‐terized by using denatured gradient gel electrophoresis (DGGE). Various water quality parameters were also measured at each collection site. Following extraction of DNA from plankton communi‐ties, 16S rRNA and 18S rRNA genes were amplified with specific primers for prokaryotes and eu‐karyotes, respectively; DNA profiles were developed by DGGE. The plankton community of each lake had its own distinct DNA profile. The total number of bands identified at 34 sampling stations ranged from 37 to 111. Both prokaryotes and eukaryotes displayed complex fingerprints composed of a large number of bands: 16 to 59 bands were obtained with the prokaryotic primer set; 21 to 52 bands for the eukaryotic primer set. The DGGE‐patterns were analyzed in relation to water quality parameters by canonical correspondence analysis (CCA). Temperature, pH, alkalinity, and the con‐centration of COD, TP and TN were strongly correlated with the DGGE patterns. The parameters that demonstrated a strong correlation to the DGGE fingerprints of the plankton community differed among lakes, suggesting that differences in the DGGE fingerprints were due mainly to lake trophic status. Results of the present study suggest that PCR‐DGGE fingerprinting is an effective and precise method of identifying changes to plankton community composition, and therefore could be a useful ecological tool for monitoring the response of aquatic ecosystems to environmental perturbations. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Culture-dependent and culture-independent methods were used to evaluate the microbial diversity in two hot springs of the Aljouf region in Saudi Arabia, including Qasr Kaff and Ain Hawas. Physicochemical characteristics of the springs were examined to establish their effect on the biodiversity of thermophilic bacteria and fungi. We employed culture-dependent techniques to study microbial diversity using four different complex media for bacteria and fungi. In addition, the direct count for algal populations from two springs was investigated. We surveyed the microbial diversity in water and sediment samples from both springs by denaturing gradient gel electrophoresis (DGGE) and clone library construction. Bacillariophycaea (18 species) was the most diverse group, followed by Cyanophyceaea. Bacterial isolates closer to the genera Bacillus spp., Geobacillus, Thermoactinomyces, and unidentified actinobacteria were recovered. Fungal isolates were related to Aspergillus, Pezizaceae, Penicillium, Acremonium, Fusarium, Chrysosporium, and Stachybotrys. Using molecular-based techniques, the results were slightly different from those obtained by culture-dependent methods, and more genera were obtained. However, most genera were uncultured microbes, particularly from bacterial communities.  相似文献   

13.
The agarophyte Gracilariopsis lemaneiformis is both important for biological research and of significant economic value. However, the genetic diversity of wild populations of the alga has not been studied. We used amplified fragment length polymorphism (AFLP) PCR and simple sequence repeat (SSR) analysis to investigate diversity in four field populations, three from the coast of Qingdao and one from Weihai, China. Forty G. lemaneiformis isolates collected from the four different geographical groups were analyzed using 16 pairs of SSR primers for PCR amplification. However, no polymorphisms were detected, indicative of a degree of genetic homogeneity. A total of 347 reproducible bands were then amplified using eight AFLP primer pairs, and genetic indices of diversity within and between populations were calculated. This analysis revealed only low levels of genetic diversity both within and between the four geographical groups of G. lemaneiformis. The Weihai population showed a higher within-population genetic diversity than any of the Qingdao populations. The data suggest that there is only limited gene flow between populations. An UPGMA dendrogram revealed two main clusters, and one of these included all the Qingdao isolates. The order of clustering was in accordance with their geographical distribution. These results suggest that the wild G. lemaneiformis populations are closely related and that there is little genetic diversity within wild germplasm in the regions sampled.  相似文献   

14.
An ecological approach was used to investigate the relationship between diversity of soil fungal communities and soil‐borne pathogen inoculum in a potato growing area of northern Italy affected by yield decline. The study was performed in 14 sites with the same tillage management practices: 10 named ‘potato sites’, that for many years had been intensely cultivated with potatoes, and 4 named ‘rotation sites’, subject to a 4‐year rotation without potatoes or any recurrent crop for many years. Fungal communities were recorded using conventional (soil fungi by plate count and endophytic fungi as infection frequency on pot‐grown potato plant roots in soil samples) and molecular approaches [Basidiomycetes and Ascomycetes with specific and denaturing gradient gel electrophoresis (DGGE) analysis]. Diversity of fungal communities in potato sites was significantly lower than that in rotation sites. In addition, fungal communities in rotation sites showed lower Berger–Parker dominance than those in the potato sites, suggesting that rotation sites had a higher diversity as well as a better fungal community balance than potato sites. The ANalysis Of SIMilarity test of soil fungi and root endophytic fungi revealed that the two cropping systems differed significantly for species composition. Root endophytic fungal communities showed a greater ability to colonise potato roots in soil samples from potato sites than those from rotation sites. Moreover, the majority of endophytic root fungal community species in potato sites belonged to the potato root rot complex and storage disease (Colletotrichum coccodes, Fusarium solani and Fusarium oxysporum), while those in rotation sites were mainly ubiquitous or saprobic fungi. Soil rDNA analyses showed that Ascomycetes were much more frequent than Basidiomycetes in all the soils examined. DGGE analysis, with the Ascomycete‐specific primer (ITS1F/ITS4A), did not reveal distinctions between the communities found at the potato and rotation sites, although the same analysis showed differences between the communities of Basidiomycetes (specific primer ITS1F/ITS4B). These findings showed that recurrent potato cropping affected diversity and composition of soil fungal communities and induced a shift in specialisation of the endophytic fungi towards potato.  相似文献   

15.
The effect of nitrogen (N) and phosphorus (P) fertilization on composition of rhizobacterial communities of volcanic soils (Andisols) from southern Chile at molecular level is poorly understood. This paper investigates the composition of rhizobacterial communities of two Andisols under pasture after 1- and 6-year applications of N (urea) and P (triple superphosphate). Soil samples were collected from two previously established sites and the composition of rhizobacterial communities was determined by denaturing gradient gel electrophoresis (PCR–DGGE). The difference in the composition and diversity between rhizobacterial communities was assessed by nonmetric multidimensional scaling (MDS) analysis and the Shannon–Wiener index. In Site 1 (fertilized for 1 year), PCR–DGGE targeting 16S rRNA genes and MDS analysis showed that moderate N application (270 kg N ha?1 year?1) without P significantly changed the composition of rhizobacterial communities. However, no significant community changes were observed with P (240 kg P ha?1 year?1) and N–P application (270 kg N ha?1 year?1 plus 240 kg P ha?1 year?1). In Site 2 (fertilized for 6 years with P; 400 kg P ha?1 year?1), PCR–DGGE targeting rpoB, nifH, amoA and alkaline phosphatase genes and MDS analysis showed changes in rhizobacterial communities only at the highest rate of N application (600 kg N ha?1 year?1). Quantitative PCR targeting 16S rRNA genes also showed higher abundance of bacteria at higher N application. In samples from both sites, the Shannon–Wiener index did not show significant difference in the diversity of rhizobacterial communities. The changes observed in rhizobacterial communities coincide in N fertilized pastures with lower soil pH and higher pasture yields. This study indicates that N–P application affects the soil bacterial populations at molecular level and needs to be considered when developing fertilizer practices for Chilean pastoral Andisols.  相似文献   

16.
A denaturing gradient gel electrophoresis (DGGE) method was developed to assess the diversity of dsrB (dissimilatory sulfite reductase beta-subunit)-genes in sulfate-reducing communities. For this purpose a PCR primer pair was optimized for the amplification of a approximately 350 bp dsrB gene fragment that after DGGE gel electrophoresis enabled us to discriminate between dsrB genes of different SRB-subgroups,-genera and -species. The dsrB-DGGE method revealed considerable genetic diversity when applied to DNA extracts obtained from aquifer samples that were derived from monitoring wells of an in situ metal precipitation (ISMP) pilot project conducted at the site of a non-ferrous industry or from environmental heavy metal contaminated samples. The sequences of the excised and sequenced DGGE bands represented dsrB genes of different SRB-subgroups,-genera and -species, thus confirming the broad applicability of the PCR primer pair. Linking the results of the physico-chemical follow-up of the field and lab experiments to the dsrB-DGGE data will provide a better understanding of the contribution of the SRB populations to the ongoing ISMP processes.  相似文献   

17.
While several studies have documented that invasive plants can change the microbial communities, little is known about how soil microbial communities respond to population variation of invasive plants. Here, nine populations of Spartina alterniflora were selected from the east coast of China along latitudinal gradient to compare bacterial diversity of rhizospheres among these populations. The bacterial diversity in S. alterniflora rhizospheres was valued by denaturing gradient gel electrophoresis (DGGE) analysis. Shannon–Weaver diversity index (H′) and number of DGGE bands showed that rhizosphere bacterial diversity of S. alterniflora populations increased along a latitudinal gradient when all the populations were grown in a common garden. These findings suggest that population variation of S. alterniflora can differentiate the rhizosphere bacterial diversity, and the latitudinal gradient can shape the specific plant–bacterial diversity relationship. Our results adding to the recent literature suggest that invasive plant–soil biota interactions would have clinal variation with environmental gradients and improve our understanding of the mechanisms and processes of plant invasions.  相似文献   

18.
19.
Aims:  To screen a pair of primers suitable for denaturing gradient gel electrophoretic (DGGE) analysis of ruminal methanogenic Archaea and to detect the archaeal communities in the rumen of goat.
Methods and Results:  Nine primer pairs for 16S rDNA of methanogenic Archaea , including six for directed polymerase chain reaction (PCR) and three for nested PCR were first evaluated by PCR amplification of the total DNA from rumen fluids and bacteria. The DGGE analysis of rumen fluids was then conducted with three primer sets (344fGC/915r, 1106fGC/1378r and 519f/915rGC) of the nine pairs tested. Good separation and quality of patterns were obtained in DGGE analysis with primer pairs 1106fGC/1378r and 519f/915rGC. A total of 40 DNA fragments were excised from the DGGE gels and their sequences were determined. All fragments belonged to methanogenic Archaea while primer pair 519f/915rGC had better amplification ranges than the other two primer pairs.
Conclusions:  The procedure of DGGE analysis with primer pair 519f/915rGC was more suitable for investigating methanogenic archaeal community in the rumen. The dominant methanogenic Archaea in the rumen of goat was Methanobrevibacter sp. and an unidentified methanogenic Archaea .
Significance and Impact of the Study:  One pair of primers suitable for DGGE analysis of ruminal methanogenic Archaea was obtained and the molecular diversity of ruminal methanogenic Archaea in goat was investigated by PCR-DGGE.  相似文献   

20.
Aims: To identify and compare microbiota in Chinese liquor Daqu, which were produced in the different regions using different production process. Methods and Results: The DNA exacted from Daqu samples was used as a template for PCR with universal primers of 16S rRNA, 26S rRNA and 18S rRNA, respectively. The amplicons were analysed using denaturing gradient gel electrophoresis (DGGE). It was observed that the bacterial DGGE profile indicated high diversity and predominance of lactic acid bacteria. The results showed that Saccharomycopsis fibuligera and Pichia anomal were dominant yeast species and that several non‐Saccharomyces yeasts including Hanseniaspora guilliermondii, Debaryomyces hansenii, Issatchenkia orientalis and Trichosporon asahii were also detected. As for fungal DGGE, Aspergillus oryzae and Absidia blakesleeana were the most common species amongst different samples. Based on the DGGE analysis, a few differences in community structure were found between Daqu samples. Conclusions: A variety of bacteria, yeast and moulds were identified in Daqu samples, in addition to the present knowledge obtained mainly through the traditional culture‐dependent methods. Moreover, production temperature played a more decisive role on the formation of micro‐organism composition in Daqu than geographical region. Significance and Impact of the Study: PCR–DGGE technique was used in this study to fully observe and asses all microbial community (including bacteria, yeast and mould) in Chinese liquor Daqu for the first time and proved to be effective in profiling Daqu microbial diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号